MODIFIED HYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS WITH SQUARE-SYMMETRIC OPERATION GWANG HUI KIM, YOUNG WHAN LEE, AND KYOUNG SIHN JI ABSTRACT. In this paper, we obtain the modified Hyers-Ulam-Rassias stability for the family of the functional equation $f(x \circ y) = H(f(x)^{1/t}, f(y)^{1/t})$ $(x, y \in S)$, where H is a homogeneous function of degree t and o is a square-symmetric operation on the set S. #### 1. Introduction In 1940, S. M. Ulam [12] raised the following problem: Under what condition does there exist an additive mapping near an approximately additive mapping? In 1941, this problem was solved by D. H. Hyers [3]. Thereafter we usually say that the equation $E_1(h)=E_2(h)$ has the Hyers-Ulam stability if for an approximate solution f of this equation, i.e., for a function f with $|E_1(f)-E_2(f)| \leq \delta$ there exists a function g such that $E_1(g)=E_2(g)$ and $|f(x)-g(x)| \leq \epsilon$. In 1978, the Hyers-Ulam stability for approximately linear mapping was generalized by Th. M. Rassias [8] who considers it for the bounded function by the sum of variable. It is called the Hyers-Ulam-Rassias stability. Thereafter P. Găvruta [2] generalized the stability of Rassias for the case of the bounded function as follows: If for an approximate solution f of the equation $E_1(h) = E_2(h)$, i.e., for a function f such that $|E_1(f) - E_2(f)| \le \phi$ holds with a given function ϕ , there exists a function g such that $E_1(g) = E_2(g)$ and $|g(x) - g| = E_2(g)$ Received September 1, 2000. Revised November 10, 2000. 2000 Mathematics Subject Classification: 39B52, 39B72, 39B82. Key words and phrases: functional equation, homogeneous function, Hyers-Ulam stability, (modified) Hyers-Ulam-Rassias stability. $|f(x)| \leq \Phi(x)$ for some fixed function Φ . We call it the modified Hyers-Ulam-Rassias stability (or stability in the spirit of Găvruta). Namely the result of Rassias is the case of special type of ϕ in this stability. One is referred to [1], [4], [5], [6], [7], [8], [9], [10], [11] for further generalizations and new open problems. The aim of present paper is to investigate the modified Hyers-Ulam-Rassias stability for the following family of functional equation: (1.1) $$f(x \circ y) = H(f(x)^{\frac{1}{t}}, f(y)^{\frac{1}{t}}) \qquad (x, y \in S),$$ where S is a nonempty set, $\circ: S \times S \to S$ is a binary operation and $H: G \times G \to G$ is a homogeneous function of degree t > 0, that is, H satisfies (1.2) $$H(uv, uw) = u^{t}H(v, w) \qquad (u, v, w \in G; 0 < t; t \in R),$$ and G is a multiplicative subsemigroup of the real or complex field. A particular case of (1.1) is the Cauchy functional equation $$f(x+y) = f(x) + f(y) \qquad (x, y \in S),$$ where S is a semigroup with the operation + and $f: S \to \mathbb{C}$. If the operation \circ satisfies the following identity: $$(x\circ y)\circ (x\circ y)=(x\circ x)\circ (y\circ y)\qquad (x,y\in S),$$ the operation o will be called square symmetric. ### 2. Square-symmetric operation Let S be a nonempty set and $\circ: S \times S \to S$ be a square symmetric operation. In addition, let G be a multiplicative subsemigroup of \mathbb{C} , and let $H: G \times G \to G$ satisfy (1.2). In the following result we show that if the equation (1.1) has sufficiently many solutions, then \circ is necessarily square symmetric. THEOREM 1. Assume that the set of solutions of the functional equation (1.1) separates the points of S, that is, for $u, v \in S$ with $u \neq v$, then there exists a solution $f: S \to G$ of (1.1) such that $f(u) \neq f(v)$. Then the operation \circ is square symmetric. PROOF. Let $x, y \in S$, and let $f: S \to G$ be an arbitrary solution of (1.1). Then, using the homogeneity of H and (1.1) several times, we obtain $$\begin{split} f((x \circ y) \circ (x \circ y)) &= H(f(x \circ y)^{\frac{1}{t}}, f(x \circ y)^{\frac{1}{t}}) \\ &= f(x \circ y) H(1, 1) \\ &= H(f(x)^{\frac{1}{t}}, f(y)^{\frac{1}{t}}) H(1, 1) \\ &= H((f(x) H(1, 1))^{\frac{1}{t}}, (f(y) H(1, 1))^{\frac{1}{t}}) \\ &= H(H(f(x)^{\frac{1}{t}}, f(x)^{\frac{1}{t}})^{\frac{1}{t}}, H(f(y)^{\frac{1}{t}}, f(y)^{\frac{1}{t}})^{\frac{1}{t}}) \\ &= H(f(x \circ x)^{\frac{1}{t}}, f(y \circ y)^{\frac{1}{t}}) \\ &= f((x \circ x) \circ (y \circ y)). \end{split}$$ By the assumption of separability, \circ is square symmetric. The next result describes a set of square-symmetric operations. COROLLARY 2. Let G be a multiplicative subsemigroup of \mathbb{C} , let $H: G \times G \to G$ satisfy (1.2), and let $\phi: S \to G$ be an arbitrary bijective function. Then the binary operation $\circ: S \times S \to S$ defined by (2.1) $$x \circ y := \phi^{-1} \bigg(H(\phi(x), \phi(y)) \bigg) \qquad (x, y \in S)$$ is square symmetric. PROOF. Clearly, ϕ is a solution of the functional equation (1.1) (with the operation \circ defined in (2.1)). By its injectivity, it separates the points of S. Thus, due to Theorem 1, \circ must be a square-symmetric operation. LEMMA 3. [7, Lemma 1] Let \circ be a square-symmetric operation on S. Define, for $x \in S$, the sequence $x[2^n]$ $(n = 0, 1, 2, \cdots)$ by $$x[1] = x[2^0] := x,$$ $x[2^{n+1}] := x[2^n] \circ x[2^n],$ $n \in \mathbb{N} := \{1, 2, \dots\}.$ Then, for each $n \in \mathbb{N}$, the mapping $x \mapsto x[2^n]$ is an endomorphism of (S, \circ) , that is, $$(x \circ y)[2^n] = x[2^n] \circ y[2^n]$$ for all $x, y \in S$. ## 3. The modified Hyers-Ulam-Rassias stability of (1.1) In this section we shall investigate a more generalized modified Hyers-Ulam-Rassias stability than that in [7], that is, the Hyers-Ulam stability for the functional equation (1.1): Let mappings φ and $\Phi_1, \Phi_2, \Phi_3, \Phi_4: S \times S \to G$ satisfy the inequalities : For all $x, y \in S$, $$\begin{split} &\Phi_1(x,y) = \sum_{k=1}^{\infty} \frac{\varphi(x[2^{k-1}],y[2^{k-1}])}{|H(1,1)|^k} < \infty, \\ &\Phi_2(x,y) = \sum_{k=1}^{\infty} \varphi(x[2^{-k}],y[2^{-k}])|H(1,1)|^{k-1} < \infty, \\ &\Phi_3(x,y) = \sum_{k=1}^{\infty} \frac{\varphi(x[2^{k-1}],y[2^{k-1}])}{|a+b|^k} < \infty, \end{split}$$ or $$\Phi_4(x,y) = \sum_{k=1}^{\infty} \varphi(x[2^{-k}], y[2^{-k}]) |a+b|^{k-1} < \infty,$$ where φ depend on that each $\Phi_i(i=1,2,3,4)$ converges to finite respectively. The definition of each bounded functions $\Phi_i(i=1,2,3,4)$ will be used at each of Theorem 4, 6, 10, 12, respectively. By using an idea in P. Găvruta [2] and Z. Páles [6], we can obtain the following results: THEOREM 4. Let S be a nonempty set and \circ be a square-symmetric operation on S. Let G be a closed multiplicative subsemigroup of $\mathbb C$ with $1 \in G$ and $H: G \times G \to G$ be a continuous homogeneous function of degree t such that $|H(1,1)| \neq 0$ and $\frac{1}{H(1,1)} \in G$. Assume that a function $g: S \to G$ satisfies the inequality $$(3.1) |g(x \circ y) - H(g(x)^{\frac{1}{t}}, g(y)^{\frac{1}{t}})| \le \varphi(x, y) (x, y \in S).$$ Then there exists a unique function $f:S\to G$ such that f is a solution of (1.1) and $$(3.2) |f(x) - g(x)| \le \Phi_1(x, x) (x \in S).$$ PROOF. Substituting x = y into (3.1) and using the t-homogeneity of H, we get $$(3.3) |g(x \circ x) - g(x)H(1,1)| \le \varphi(x,x) (x \in S).$$ Let $x \in S$ be fixed, and replace x by $x[2^{n-1}]$ in (3.3). Then we obtain (3.4) $$\left| \frac{g(x[2^n])}{H(1,1)^n} - \frac{g(x[2^{n-1}])}{H(1,1)^{n-1}} \right| \le \frac{\varphi(x[2^{n-1}], x[2^{n-1}])}{|H(1,1)|^n}$$ for all $x \in S$ and $n \in \mathbb{N}$. Let $g_0 := g$ and define, the function g_n $(n \in \mathbb{N})$ by $$g_n(x) := \frac{g(x[2^n])}{H(1,1)^n}$$ $(x \in S).$ Since $\frac{1}{H(1,1)} \in G$, $g_n : S \to G$ is a function and, in view of (3.4), we have $$|g_n(x) - g_m(x)| \le \sum_{j=m+1}^n |g_j(x) - g_{j-1}(x)|$$ $$\le \sum_{j=m+1}^n \frac{\varphi(x[2^{j-1}], x[2^{j-1}])}{|H(1, 1)|^j}$$ for n > m > 0. Therefore, by letting $m \to \infty$ in the last inequality, the sequence $g_n(x)$ is a Cauchy sequence for all fixed $x \in S$ from the definition of Φ_1 . Since the set G is closed, we can define a mapping $f: S \to G$ by $$f(x) := \lim_{n \to \infty} g_n(x)$$ $(x \in S)$. It follows from (3.4) that $$|g_n(x) - g_0(x)| \le \sum_{j=1}^n \frac{\varphi(x[2^{j-1}], x[2^{j-1}])}{|H(1, 1)|^j}$$ $$\le \sum_{j=1}^\infty \frac{\varphi(x[2^{j-1}], x[2^{j-1}])}{|H(1, 1)|^j}$$ $$= \Phi_1(x, x).$$. Taking the limit of the last inequality as $n \to \infty$ produces the desired inequality (3.2). To see that f satisfies (1.1), let $x, y \in S$ and replace x, y by $x[2^n]$, $y[2^n]$, respectively, in (3.1). Using Lemma 3, we get $$|g((x \circ y)[2^n]) - H(g(x[2^n])^{\frac{1}{t}}, g(y[2^n])^{\frac{1}{t}})| \le \varphi(x[2^n], y[2^n]).$$ Hence, by the t-homogeneity of H, $$|g_n(x \circ y) - H(g_n(x)^{\frac{1}{t}}, g_n(y)^{\frac{1}{t}})| \le \frac{\varphi(x[2^n], y[2^n])}{|H(1, 1)|^n}$$ for all $x, y \in S$ and $n \in \mathbb{N}$. Taking the limit of the last inequality as $n \to \infty$, it follows from the continuity of H and the definition of Φ_1 that $$|f(x \circ y) - H(f(x)^{\frac{1}{t}}, f(y)^{\frac{1}{t}})| = 0$$ $(x, y \in S).$ Thus (1.1) holds. Assume that $h: S \to G$ is an another function which satisfies (1.1) and (3.2). Since $f(x[2^n]) = f(x)H(1,1)^n$ and $h(x[2^n]) = h(x)H(1,1)^n$, from (1.1), for all $x \in S$ and $n \in \mathbb{N}$, it follows from (3.2) that $$\begin{split} |h(x) - f(x)| &= \frac{1}{|H(1,1)|^n} |h(x[2^n]) - f(x[2^n])| \\ &\leq \frac{1}{|H(1,1)|^n} [|h(x[2^n]) - g(x[2^n])| + |g(x[2^n]) - f(x[2^n])|] \\ &\leq \frac{2}{|H(1,1)|^n} \Phi_1(x[2^n], x[2^n]) \\ &= \sum_{k=n+1}^{\infty} \frac{\varphi(x[2^k], y[2^k])}{|H(1,1)|^k} \end{split}$$ for all $x \in S$ and $n \in \mathbb{N}$. By letting $n \to \infty$ in the last inequality, we immediately see the uniqueness of f from the definition of Φ_1 . This finishes the proof of Theorem 4. COROLLARY 5. [7, Theorem 2] Let S be a nonempty set and \circ be a square-symmetric operation on S. Let G be a closed multiplicative subsemigroup of $\mathbb C$ with $1 \in G$ and $H: G \times G \to G$ a continuous homogeneous function of degree t such that |H(1,1)| > 1 and $\frac{1}{H(1,1)} \in G$. Assume that, for some $\varepsilon \geq 0$, a function $g: S \to G$ satisfies the stability inequality $$(3.5) \left| g(x \circ y) - H(g(x)^{\frac{1}{t}}, g(y)^{\frac{1}{t}}) \right| \le \varepsilon (x, y \in S).$$ Then there exists a function $f: S \to G$ such that f is a solution of (1.1) and $|f(x) - g(x)| \le \frac{\varepsilon}{|H(1,1)| - 1}$ $(x \in S)$. PROOF. Consider t=1 and $\varphi(x,y)=\varepsilon$ in Theorem 4. There exists a function $f:S\to G$ such that f is a solution of the equation $f(x\circ y)=H(f(x),f(y))$ and $$|g(x) - f(x)| \le \frac{\varepsilon}{|H(1,1)| - 1}$$ $(x \in S)$. We say that the operation \circ has the *divisibility property* if, for each $x \in S$, there exists a unique element $y \in S$ such that $y \circ y = x$. THEOREM 6. Let S be a nonempty set and \circ be a square-symmetric operation with the divisibility property on S. Let G be a colsed multiplicative subsemigroup of $\mathbb C$ with $1 \in G$ and $H: G \times G \to G$ be a continuous homogeneous function of degree t. Assume that a function $g: S \to G$ satisfies the inequality (3.1). Then there exists a function $f: S \to G$ such that f is a solution of (1.1) and $$|f(x) - g(x)| \le \Phi_2(x, x) \qquad (x \in S).$$ PROOF. The proof of this theorem is analogous to that of Theorem 4. Replacing x and y by $x[2^{-n}]$ in (3.1) and using the t-homogeneity of H, we obtain $$|g(x[2^{1-n}]) - g(x[2^{-n}])H(1,1)| \le \varphi(x[2^{-n}],x[2^{-n}]) \qquad (x \in S; n \in \mathbb{N}).$$ Thus (3.7) $$|g(x[2^{1-n}])H(1,1)^{n-1} - g(x[2^{-n}])H(1,1)^n|$$ $$\leq \varphi_2(x[2^{-n}],x[2^{-n}]) |H(1,1)|^{n-1}$$ for $x \in S$, and $n \in \mathbb{N}$. Let $g_0 := g$ and define the function g_n $(n \in \mathbb{N})$ by $$g_n(x) := g(x[2^{-n}])H(1,1)^n \qquad (x \in S).$$ Then $g_n: S \to G$ and, by (3.7), exactly as in the proof of Theorem 4, we can deduce that the sequence $g_n(x)$ is a Cauchy sequence for all fixed $x \in S$ from the definition of Φ_2 . Define f as the pointwise limit function of the sequence g_n . It follows from (3.7) that $$|g_n(x) - g_0(x)| \le \sum_{j=1}^n \varphi_2(x[2^{-j}], x[2^{-j}]) |H(1, 1)|^{j-1}$$ $$\le \sum_{j=1}^\infty \varphi_2(x[2^{-j}], x[2^{-j}]) |H(1, 1)|^{j-1}$$ $$= \Phi_2(x, x),$$ which, upon taking the limit as $n \to \infty$, yields (3.6). To see that f satisfies (1.1), let $x, y \in S$ and replace x, y by $x[2^{-n}]$, $y[2^{-n}]$ in (3.1). Then we get $$|g((x \circ y)[2^{-n}]) - H(g(x[2^{-n}])^{\frac{1}{t}}, g(y[2^{-n}])^{\frac{1}{t}})| \le \varphi(x[2^{-n}], y[2^{-n}]).$$ It follows from the divisibility assumption that the equation $y[2^n] = x$ has a unique solution y for each fixed $x \in S$ and $n \in \mathbb{N}$. Denote this unique element y by $x[2^{-n}]$. Clearly, the mapping $x \to x[2^{-n}]$ is also an endomorphism of (S, \circ) . Hence, by the t-homogeneity of H and an endomorphism of the above mapping, $$|q_n(x \circ y) - H(q_n(x)^{\frac{1}{t}}, q_n(y)^{\frac{1}{t}})| < \varphi(x[2^{-n}], x[2^{-n}])|H(1, 1)|^n$$ for all $x, y \in S$, and $n \in \mathbb{N}$. Taking the limit as $n \to \infty$, by using the continuity of H and the definition of Φ_2 , it follows that $$|f(x \circ y) - H(f(x)^{\frac{1}{t}}, f(y)^{\frac{1}{t}})| = 0$$ $(x, y \in S).$ Therefore (1.1) holds and the uniqueness can be proved in a similar manner as in the proof of Theorem 4. Hence the proof of theorem is complete. COROLLARY 7. [7, Theorem 3] Let S be a nonempty set and \circ be a square symmetric operations on S. Assume that the operation \circ has the divisible property. Let G be a closed multiplicative subsemigroup of $\mathbb C$ with $1 \in G$ and $H: G \times G \to G$ be a continuous homogeneous function of degree t such that |H(1,1)| < 1. Assume that, for some $\varepsilon \geq 0$, a function $g: S \to G$ satisfies the functional inequality $$(3.8) |g(x,y) - H(g(x),g(y))| \le \varepsilon (x,y \in S).$$ Then there exists a function $f: S \to G$ such that f is a solution of (3.9) $$f(x,y) = H(f(x), f(y)) \text{ and }$$ $$|g(x) - f(x)| \le \frac{\varepsilon}{1 - |H(1,1)|}.$$ COROLLARY 8. Let G be a closed multiplicative subsemigroup of $\mathbb C$ with $1 \in G$ and $H: G \times G \to G$ be a continuous homogeneous of degree t function such that $|H(1,1)| \neq 0$ and $\frac{1}{H(1,1)} \in G$. Assume that a function $g: G \to G$ satisfies the inequality $$\left|g(H(x,y)) - H(g(x)^{\frac{1}{t}}, g(y)^{\frac{1}{t}})\right| \le \varphi(x,y) \qquad (x,y \in G).$$ Then there exists a function $f: G \to G$ such that f is a solution of $$f(H(x,y)) = H(f(x)^{\frac{1}{t}}, f(y)^{\frac{1}{t}}) \qquad (x, y \in G)$$ and $$|g(x) - f(x)| \le \varphi(x, x)$$ $(x, y \in G)$. PROOF. Let $x \circ y = H(x, y)$. By Corollary 2, \circ is a square-symmetric operation. In view of Theorems 4 and 6, we complete the proof. COROLLARY 9. [7, Corollary 2] Let G be a closed multiplicative subsemigroup of C with $1 \in G$ and $H: G \times G \to G$ be a continuous homogeneous function of degree t such that $|H(1,1)| \notin \{0,1\}$ and $\frac{1}{H(1,1)} \in G$. Assume that, for some $\varepsilon \geq 0$, a function $g: G \to G$ satisfies the stability inequality (3.8) for all $x, y \in G$. Then there exists a function $f: G \to G$ such that f is a solution of (3.9) for all $x, y \in G$, and $$|g(x)-f(x)| \leq \frac{\varepsilon}{|H(1,1)|-1|}$$ $(x \in G).$ # 4. Applications to the stability of homogeneous function H(x,y)=ax+by In this section, we shall investigate the modified Hyers-Ulam-Rassias stability of the functional equation (4.2). In the case when $X = \mathbb{C}$ or $X = \mathbb{R}$ these results are also corollaries of Theorems 4 and 6 if one takes the homogeneous function H(x, y) = ax + by, respectively. Since all proofs in this section are similar to those of Section 3, we shall skip most of the proofs. THEOREM 10. Let X be a Banach space over \mathbb{K} , where \mathbb{K} denotes the field of real or complex numbers. Let S be a nonempty set and \circ be a square-symmetric operation on S. Let $a, b \in \mathbb{K}$ such that $|a+b| \neq 0$. Assume that a function $g: S \to X$ satisfies the inequality $$(4.1) |g(x \circ y) - ag(x) - bg(y)| \le \varphi(x, y) (x, y \in S).$$ Then there exists a unique function $f:S\to X$ such that f is a solution of $$(4.2) f(x \circ y) = af(x) + bf(y) (x, y \in S).$$ and $$|f(x) - g(x)| \le \Phi_3(x, x) \qquad (x \in S).$$ PROOF. We apply Theorem 4 with H(1,1) = a + b and t = 1. By replacing y by x in (3.1), we have $$(4.4) |g(x \circ x) - ag(x) - bg(x)| \le \varphi(x, x).$$ Replacing x by $x [2^{n-1}]$ in (4.4), we get $$\left| \frac{g(x[2^n])}{|a+b|^n} - \frac{g(x[2^{n-1}])}{|a+b|^{n-1}} \right| \le \frac{\varphi(x[2^{n-1}], x[2^{n-1}])}{|a+b|^n}.$$ Let $g_0 := g$ and define the function g_n $(n \in \mathbb{N})$ by $$g_n(x) := rac{g(x[2^n])}{\left|a+b ight|^n} \qquad (x \in S).$$ By employing analogous steps in the proof of Theorem 4, we can see that f is unique, satisfies (4.2), and estimates (4.3). COROLLARY 11. [7, Theorem 4] Let X be a Banach space over \mathbb{K} , where \mathbb{K} denotes the field of real or complex numbers. Let S be a nonempty set and \circ be a square-symmetric operation on S. Let $a,b\in\mathbb{K}$ such that |a+b|>1. Assume that, for some $\varepsilon\geq 0$, a function $g:S\to X$ satisfies the inequality $$(4.5) |g(x \circ y) - ag(x) - bg(y)| \le \varepsilon (x, y \in S).$$ Then there exists a unique function $f: S \to X$ such that f is a solution of (4.2) and $$|f(x) - g(x)| \le \frac{\varepsilon}{|a+b|-1}$$ $(x \in S)$. THEOREM 12. Let X be a Banach space over \mathbb{K} , where \mathbb{K} denotes the field of real or complex numbers. Let S be a non-empty set and \circ a square-symmetric operation on S with the divisibility property. Assume that a function $g: S \to X$ satisfies the inequality (4.1). Then there exists a function $f: S \to X$ such that f is a solution of (4.2) and $$|f(x) - g(x)| \le \Phi_4(x, y) \qquad (x \in S).$$ PROOF. Setting H(g(x), g(y)) = ag(x) + bg(y) and t = 1 in inequality (3.1), then it leads to (4.1). Replacing x and y by $x[2^{-n}]$ in (4.1), considering the multiplicativity of \circ , then we have $$|g(x[2^{1-n}]) - (a+b)g(x[2^{-n}])| \le \varphi(x[2^{-n}], x[2^{-n}]) \qquad (x \in S; n \in \mathbb{N}).$$ Thus we find that, for all $x \in S$ and $n \in \mathbb{N}$, $$|g(x[2^{1-n}])(a+b)^{n-1} - g(x[2^{-n}])(a+b)^n|$$ $$\leq \varphi(x[2^{-n}], x[2^{-n}])|a+b|^{n-1},$$ which, upon employing the analogue of the proof of Theorem 6, completes the proof. \Box COROLLARY 13. [7, Theorem 5] Let X be a Banach space over \mathbb{K} , where \mathbb{K} denotes the field of real or complex numbers. Let S be a nonempty set and \circ be a square-symmetric operation on S with the divisibility property. Let $a,b\in\mathbb{K}$ such that |a+b|<1. Assume that, for some $\varepsilon\geq 0$, a function $g:S\to X$ satisfies the inequality (4.5) Then there exists a function $f:S\to X$ such that f is a solution of (4.2) and $$|f(x) - g(x)| \le \frac{\varepsilon}{1 - |a+b|}$$ $(x \in S)$. COROLLARY 14. Let X be a Banach space over \mathbb{K} , where \mathbb{K} denotes the field of real or complex numbers. Let $H: X \times X \to X$ be a continuous X-homogeneous function. Let $a,b \in \mathbb{K}$ such that $|a+b| \neq 0$. Assume that a function $g: X \to X$ satisfies the inequality $$|g(H(x,y)) - ag(x) - bg(y)| \le \varphi(x,y)$$ $(x,y \in X).$ Then there exists a unique function $f: X \to X$ such that f is a solution of $$f(H(x,y)) = af(x) + bf(y) \qquad (x,y \in X)$$ and $$|f(x) - g(x)| \le \Phi_i(x, x)$$ $(x, y \in X; i = 3 \text{ or } 4).$ #### References - [1] C. Borelli-Forti, and G.-L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995), 229-236. - [2] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. - [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224. - [4] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of the Functional Equations in Several Variables, Birkhäuser Verlag, 1998. - [5] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153. - [6] Z. Páles, Generalized stability of the Cauchy functional equation, Aequationes Math. 56 (1998), 222-232. - [7] Z. Páles, P. Volkmann, and R. Duncan Luce, Stability of Functional Equations with Square-Symmetric Operations, Proc. Natl. Acad. Sci. 95 (1998), no. 22, 12772-12775. - [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. - [9] _____, On the modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106-113. - [10] Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. - [11] Th. M. Rassias and J. Tabor, What is left of Hyers-Ulam stability, J. Nat. Geometry 1 (1992), 65-69. - [12] S. M. Ulam, "Problems in Modern Mathematics" Chap. VI, Science editions, Wiley, New York, 1964. Gwang Hui Kim Department of Mathematics Kangnam University Suwon 449–702, Korea E-mail: ghkim@kns.kangnam.ac.kr Young Whan Lee Department of Mathematics Taejon University Taejon, 300-716, Korea E-mail: ywlee@dragon.taejon.ac.kr Kyoung Sihn Ji Department of Mathematics Taejon University Taejon, 300–716, Korea E-mail: jks8481@chollian.net