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MODIFIED HYERS-ULAM-RASSIAS
STABILITY OF FUNCTIONAL EQUATIONS
WITH SQUARE-SYMMETRIC OPERATION

Gwang Hur KiM, YOUNG WHAN LEE, aND KYOUNG SIHN JI

ABSTRACT. In this paper, we obtain the modified Hyers-Ulam-
Rassias stability for the family of the functional equation f(z o y)
= H{f@)*, f(y)**) (z,y € ), where H is a homogeneous func-
tion of degree ¢t and o is a square-symmetric operation on the set
S.

1. Introduction

In 1940, S. M. Ulam [12] raised the following problem: Under what
condition does there exist an additive mapping near an approximately
additive mapping?

In 1941, this problem was solved by D. H. Hyers [3]. Thereafter
we usually say that the equation Ej(h) = E2(h) has the Hyers-Ulam
stability if for an approximate solution f of this equation, i.e., for a
function f with |Ey(f) — E2(f)| < & there exists a function g such that
E1(g} = Ea2(g) and |f(x) — g(z)| < e. In 1978, the Hyers-Ulam stability
for approximately linear mapping was generalized by Th. M. Rassias
(8] who considers it for the bounded function by the sum of variable.
It is called the Hyers-Ulam-Rassias stability. Thereafter P. Gavruta [2]
generalized the stability of Rassias for the case of the bounded function
as follows:

If for an approximate solution f of the equation Ey(h) = Ea(h),
i.e., for a function f such that |E1(f) — E2(f)| £ ¢ holds with a given
function ¢, there exists a function g such that £y (¢) = E2(g) and [g{z) —
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f(z)| < ®{z) for some fixed function &. We call it the modified Hyers-
Ulam-Rasstas stability (or stability in the spirit of Gavruta). Namely the
result of Rassias is the case of special type of ¢ in this stability. One is
referred to [1], [4], [5], [6], [7], (8], [9], [10], [11] for further generalizations
and new open problems.

The aim of present paper is to investigate the modified Hyers-Ulam-
Rassias stability for the following family of functional equation:

(1.1) fzoy) = H(f@)E. fW)})  (z,y°€ ),
where S is a nonempty set, ¢ : § x § — § is a binary operation and

H: G x G — G is a homogeneous function of degree t > 0, that is, H
satisfies

(1.2) H(uww, uw) = u* H(v, w) {(u,v,w € G;0 < t;t € R),

and G is a multiplicative subsemigroup of the real or complex field. A
particular case of (1.1} is the Cauchy functional equation

fe+y) =f@)+fy) (zyes),

where § is a semigroup with the operation + and f: 5 — C.
If the operation o satisfies the following identity:

(xoy)o(zoy)=(zozjo(yoy) (x,y€S),

the operation o will be called square symmetric.

2. Square-symmetric operation

Let S be a nonempty set and o: § x § — § be a square symmetric
operation. In addition, let G be a multiplicative subsemigroup of C, and
let H:G x G — G satisfy (1.2).

In the following result we show that if the equation (1.1) has suffi-
ciently many solutions, then ¢ is necessarily square symmetric.

THEOREM 1. Assume that the set of solutions of the functional equa-
tion (1.1) separates the points of S, that is, for u,v € S with u # v,
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then there exists a solution f : § — G of (1.1) such that f(u) # f(v).
Then the operation o is square symmetric.

PROOF. Let z,y € S, and let f : § — G be an arbitrary solution
of (1.1). Then, using the homogeneity of H and (1.1) several times, we
obtain

fl(moy)o(zoy)) = H(f(zoy)i, f(zoy)t)
= f(zoy)H(1,1)
= H(f()?, fy)H)H(1,1)
= H((f(z)H(1,1))*, (f@)H(1,1))%)
= H(H(f (@)%, f())F, H(f(v)}, f(y)?)?)
= H(f(zoz)i, flyoy)t)
= f((zox)o(yoy))
By the assumption of separability, o is square symmetric. O

The next result describes a set of square-symmetric operations.

COROLLARY 2. Let G be a multiplicative subsemigroup of C, let
H:GxG — G satisfy (1.2), and let ¢ : § — G be an arbitrary bijective
function. Then the binary operation ¢ : 8§ x § — S defined by

@) aoy= ¢ (HW@@.H6)  wues
is square symmetric.

PROOF. Clearly, ¢ is a solution of the functional equation (1.1) (with
the operation o defined in (2.1)). By its injectivity, it separates the
points of §. Thus, due to Theorem 1, o must be a square-symmetric
operation. a

LEMMA 3. [7, Lemma 1] Let o be a square-symmetric operation on
S. Define, for x € S, the sequence z[2"] (n =0,1,2,---) by

z|l] = z{2°) := =, z[2™Y 1= 22" 0 2[27], neN:={1,2,...}.

Then, for each n € N, the mapping x — z[2"] is an endomorphism of
(S,0), that Is,

(z o y)[2"] = z[27] o y[27] for all z,y € S.
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3. The modified Hyers-Ulam-Rassias stability of (1.1)

In this section we shall investigate a more generalized modified Hyers-
Ulam-Rassias stability than that in [7], that is, the Hyers-Ulam stability
for the functional equation (1.1}):

Let mappings ¢ and &1, &y, P35, By : Sx5 — G satisfy the inequalities
:Forallz,y € S,

_ a2yl )
D)= 2 L

< 00,

y) = o@27*,y27 NIH(L, 1) < oo,
k=1

oo k—1 k—1
@3($,y) — Z (lo(m[2|a _iabylE? D < oo,
=1

or
Ba(o,y) = E:wﬂQ 2-])]a + b1 < oo,

where ¢ depend on that each ®;(i = 1, 2, 3,4) converges to finite respec-
tively. The definition of each bounded functions ®;{(i = 1,2, 3,4) will be
used at each of Theorem 4, 6, 10, 12, respectively.

By using an idea in P. Gavruta [2] and Z. Péles [6], we can obtain
the following results:

THEOREM 4. Let § be a nonempty set and o be a square-symimnetric
operation on §. Let G be a closed multiplicative subsemigroup of C
with 1 € G and H : G x G — G be a continuous homogeneous function

1
of degree t such that |H(1,1)| # 0 and F(l_ml_j € G. Assume that a

function ¢ : § — G satisfies the inequality

(3.1) lg(zoy) — Hg(z)1,9(p)T) < plzy)  (z,9€S).

Then there exists a unique function f : § — G such that f is a
solution of (1.1) and

(3.2) |f(z) — g(z)| < @1z, z)  (z€9).
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PROOF. Substituting z = ¥ into (3.1) and using the t-homogeneity
of H, we get

(3.3) lg{z o z) — g(x)H(1,1)| < oz, z) (x € 5).
Let z € S be fixed, and replace = by z[2"7!| in (3.3). Then we obtain

g(z[2"]) gz | _ w271, z[2"1])
(34) H(1,1)» H(1,1)* 1! = |H(1, 1)|

for all z € S and n € N. Let go := g and define, the function g, (n € N)
by
g(w[z ]) (z € 8).

gn(m) = H(l, 1)71

Since € G, gn : 8 — G is a function and, in view of (3.4), we

H(1,1)
have

mn

on(@) = gm@ < S lg5(2) — g5 ()]

Py
SCLRE R
< 3

for n > m > 0. Therefore, by letting m — oo in the last inequality,
the sequence g,(z) is a Cauchy sequence for all fixed z € S from the
definition of ®;. Since the set G is closed, we can define a mapping
f:8—Ghby

flz) = lim g.(z) (z € S).

n—oo

It follows from (3.4) that

plaf2’~!],2[2))
T

M:

lgn(z) — go(x)] <

L,
||
N

p(z[271], [P 7))
|H(L, 1)l

r’%g

Il
e L%
— "‘

1 :I:,m).

.Taking the limit of the last inequality as n — oo produces the desired
inequality (3.2).
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To see that f satisfies (1.1), let x,y € S and replace z,y by z[27],
y{2"}, respectively, in (3.1). Using Lemma 3, we get

l9((z 0 9)[2")) ~ H(g(2")}, 9(4[27) #)] < p(z[2"), y[2")).
Hence, by the {-homogeneity of H,

e(z[27], y[27])

|gn(;coy)—H(gn(-’b")fagn(y)%)l < |H(l,1)|"

for all z,y € § and n € N. Taking the limit of the last inequality as
n — 00, it follows from the continuity of H and the definition of ®; that

f(zoy) — H(f()t, f)?) =0 (z,y€ ).

Thus (1.1) holds.

Assume that h : § — G is an another function which satisfies (1.1)
and (3.2). Since f(2{2"]) = f(x)H(1,1)™ and h(z[2"]) = h(z)H(1,1)",
from (1.1}, for all z € S and n € N, it follows from (3.2) that

1 n T
|n{z) — (=) = Wlh(m[g [} = f(=2"])

1 . ; . i
< o e - oal2™)l+ loal2™) - flal2"])]

2 n T
< W‘I’l(iﬂp L z[27])

Z p(z[2%], y[2%])
T DR
M |H(1,1)]
for all z € § and n € N. By letting » — oo in the last inequality, we
immediately see the uniqueness of f from the definition of ®,. This
finishes the proof of Theorem 4. 0

COROLLARY 5. |7, Theorem 2| Let S be a nonempty set and o be
a square-symmetric operation on S. Let G be a closed multiplicative
subsemigroup of C with 1 € G and H : G x G — @ a continuous

1
homogeneous function of degree t such that |H(1,1)| > 1 and LD €
G. Assume that, for some £ > 0, a function g : § — G satisﬁe,s the
stability inequality

1

(3.5) g(zoy) — H(g(z)t, gm)t)| <e  (z,y€8).
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Then there exists a function f : § — G such that f is a solution of (1.1)
and
£

|f(z) — g(z)| < HL) -1 (x €8).

ProoF. Consider ¢t = 1 and ¢(z,y) = ¢ in Theorem 4. There exists
a function f : § — G such that f is a solution of the equation f(zoy) =

H(f(x), f(y)) and

£

ﬂiH(l,lH—l (z € S).

lg(z) — f(z)] <

We say that the operation o has the divisibility property if, for each
x € S, there exists a unique element y € S such that yoy = z. O

THEOREM 6. Let § be a nonempty set and o be a square-symmetric
operation with the divisibility property on 5. Let G be a colsed mul-
tiplicative subsemigroup of C with 1 € G and H : G x G — G be a
continuous homogeneous function of degree t. Assume that a function
g : S — G satisfies the inequality (3.1). Then there exists a function
f : 8 — G such that f is a solution of (1.1) and

(3.6) 1f(z) — g(2)| < oz, 2) (€ 5).

PRrROOF. The proof of this theorem is analogous to that of Theorem
4.

Replacing x and y by £[27"] in (3.1) and using the t-homogeneity of
H, we obtain

l9(2[22~")) — g(22 " DH, 1| € p(e27",227")) (e € SineN).
Thus

(3.7)  |g(z[2' T DH (L, 1) — g(z[27) H(L, 1)
< wa(z[27™], 227" [H (1, )"

for z € S, and n € N. Let go := g and define the function g, (n € N) by
gn{z) == g{z[27*)H(1,1)" (z € 8).

Then g, : § — G and, by (3.7}, exactly as in the proof of Theorem 4, we
can deduce that the sequence g,(xz) is a Cauchy sequence for all fixed
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z € 8 from the definition of 5. Define f as the pointwise limit function
of the sequence g,. It follows from (3.7) that

|gn(2) — go(z)| < Z 2(z[279), 227 H (L, P

By
=

< ) eaz27] 27 H (L, P

8

=1
Oo(z, ),

which, upon taking the limit as n — oo, yields (3.6}.
To see that f satisfies (1.1), let z,% € S and replace z,y by z{27"],
y[27™"] in (3.1). Then we get

lo((z o9)27™]) — H(g(z[27"]), o(@[2 ") ?)] < p(z[27™], 927 "))

It follows from the divisibility assumption that the equation y[2"] = z
has a unique solution y for each fixed z € S and n € N. Denote this
unique element y by z[27"]. Clearly, the mapping z — z[27"] is also an
endomorphism of (S, ).

Hence, by the t-homogeneity of H and an endomorphism of the above
mapping,

19n(z 0) = H(gn()¥, 9n () )l < 0(e2™"), 22 " IH(L, 1)

for all z,y € S, and n € N. Taking the limit as n — oo, by using the
continuity of I and the definition of &5, it follows that

If(zoy) — H(f (), flp)H) =0 (z,y€8).

Therefore (1.1) holds and the uniqueness can be proved in a similar
manner as in the proof of Theorem 4. Hence the proof of theorem is
complete. O

COROLLARY 7. [7, Theorem 3| Let S be a nonempty set and o be a
square symmetric operations on §. Assume that the operation o has the
divisible property. Let G be a closed multiplicative subsemigroup of C
with1l € G and H : G x G — G be a continuous homogeneous function
of degree t such that |H(1,1)| < 1. Assume that, for somee > 0, a
function g : § — G satisfies the functional inequality

(3.8) lg(z,4) — H(g(z), g(y))l < (2,9 €5).
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Then there exists a function f: 5 — G such that f is a solution of

(3.9) fz,y) = H(f(2), f(y)) and

£
lg(z) — f(z)| < T{lzl)l

COROLLARY 8. Let G be a closed multiplicative subsemigroup of C
withl € G and H : G x G — G be a continuous homogeneous of degree

t function such that |H(1,1)| # 0 and ﬁ € G. Assume that a

function g : G — G satisfies the inequality

9(H(z,9)) - Hig(2)t,90) )| < p(z,9)  (z,y€C).
Then there exists a function f : G — ( such that f is a solution of

FH(z,y) = H(f (@), fm)?)  (z,y€G)
and
l9(z) — f(z)| < p(z,2)  (z,y € Q).

PROOF. Let zoy = H{x,y). By Corollary 2, o is a square-symmetric
operation. In view of Theorems 4 and 6, we complete the proof. O

COROLLARY 9. [7, Corollary 2] Let G be a closed multiplicative sub-
semigroup of C with 1 € G and H : G ¥ G — G be a continuous homo-
geneous function of degree t such that |H(1,1)| € {0,1} and TJ(IT,ﬁ € G.
Assume that, for some € > 0, a function g : G — ( satisfies the stability
inequality (3.8) for all z,y € G. Then there exists a function f : G — G
such that f is a solution of (3.9) for all z,y € G, and

lg(z) — f(z)| < TELD =1 (z € G).

4. Applications to the stability of homogeneous function
Hiz,y) = az + by

In this section, we shall investigate the modified Hyers-Ulam-Rassias
stability of the functional equation (4.2). In the case when X = C or
X = R these results are also corollaries of Theorems 4 and 6 if one takes
the homogeneous function H(z,y) = ax + by, respectively.

Since all proofs in this section are similar to those of Section 3, we
shall skip most of the proofs.
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THEOREM 10. Let X be a Banach space over K, where K denotes
the field of real or complex numbers. Let S be a nonempty set and o be
a square-symmetric operation on S. Let a,b € K such that |a + b # 0.
Assume that a function g : § — X satisfles the inequality

(4.1) lg(x o y) — ag(x) — bg(y)| < w(z,y)  (x,y€8).

Then there exists a unique function f : § — X such that f is a solution
of

(4.2) flzoy)=af(z) +bfly) (z,y€8)-
and
(4.3) |f{z) — g(z)| < P3(z,z)  (z € 9).

PrOOF. We apply Theorem 4 with H(1,1) =a+band t = 1. By
replacing y by z in (3.1), we have

(4.4) l9(z o z) - ag(z) — bg(z)| < o(z, z).
Replacing z by z [2771] in (4.4), we get

g(@[2) _ g2 )| _ wlz[2"71], = [2"71])
la +8"  Ja+b"t| T la+ b '

Let go := ¢ and define the function g, (n € N) by
_ g(=2"])

gnlz) == @t o (x € 8).
By employing analogous steps in the proof of Theorem 4, we can see
that f is unique, satisfies (4.2), and estimates (4.3). 0

COROLLARY 11. [7, Theorem 4] Let X be a Banach space over K,
where X denotes the field of real or complex numbers. Let S be a
nonempty set and o be a square-symmetric operation on §. Let a,b € K
such that |a + b| > 1. Assume that, for somez > 0, a functiong : § — X
satisfies the inequality

(4.5) lg(zoy) —ag(z) —bg(y)| <e  (z,y €5).

Then there exists a unique function f : § — X such that f is a solution
of (4.2) and

f@) - g@ S gy € 8)
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TueECREM 12. Let X be a Banach space over K, where K denotes
the field of real or complex numbers. Let S be a non-empty set and o a
square-symmetric operation on S with the divisibility property. Assume
that a function g : S ~— X satisfies the inequality (4.1).

Then there exists a function f : § — X such that f is a solution of
(4.2) and

|f(z) — g(z)] < Ba(z,y)  (z €.

PROOF. Setting H(g(z), g(y)) = ag{z)+bg(y) and t = 1 in inequality
(3.1), then it leads to (4.1). Replacing = and y by z[27"] in (4.1),
considering the multiplicativity of o, then we have

lg(z[2' ")) — (a+ b)g(x2"))| < p(z27"],z[27"))  (z € SineN)
Thus we find that, for all z € $ and n € N,

l9(=[2' " Ha + )" — g(z[27])(a + b)"]
< w(@l27"] a2 e+ 67,

which, upon employing the analogue of the proof of Theorem 6, com-
pletes the proof. O

CoOROLLARY 13. {7, Theorem 5| Let X be a Banach space over K,
where K denotes the field of real or complex numbers. Let § be a
nonempty set and o be a square-symmetric operation on S with the
divisibility property. Let a,b € K such that |a + b| < 1. Assume that,
for some € > 0, a function g : § — X satisfies the inequality (4.5) Then
there exists a function f: S — X such that f is a solution of (4.2) and

I
|f{z) — g(z)]| < m

(z € 8).
COROLLARY 14, Let X be a Banach space over K, where K denotes
the field of real or complex numbers. Let H : X x X — X be a con-

tinuous X-homogeneous function. Let a,b € K such that |a + b # 0.
Assume that a function g : X — X satisfies the inequality

lg(H(z,y)) — aglz) — bg()| < plz,y)  (z,y € X).

Then there exists a unique function f : X — X such that f is a solution
of

f(H(.?;,y)) zaf(:r:)~|-bf(y) (.’B,yEX)
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and
() - 9@} < Bi(m,)  (e,y € Xsi=3Bord).
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