H(sub)$\infty$ Design for Decoupling Controllers Based on the Two-Degree-of-Freedom Standard Model Using LMI Methods

LMI 기법을 이용한 2자유도 표준모델에 대한 비결합 제어기의 H(sub)$\infty$ 설계

  • Gang, Gi-Won ;
  • Lee, Jong-Sung (Dept.of Electric Electronics Computer Engineering, Sungkyunkwan University) ;
  • Park, Kiheon (Dept.of Electric Electronics Computer Engineering, Sungkyunkwan University)
  • 강기원 ((주)마이다스코리아) ;
  • 이종성 (성균관대학교 전기전자 및 컴퓨터공학과) ;
  • 박기헌 (성균관대학교 전기전자 및 컴퓨터공학과)
  • Published : 2001.03.01

Abstract

In this paper, the decoupling H(sub)$\infty$ controller which minimizes the maximum energy in the output signal is designed to reduce the coupling properties between the input/output variables which make it difficult to control a system efficiently. The state-space formulas corresponding to the existing transfer matrix formulas of the controller are derived for computational efficiency. And for a given decoupling $H_{\infty}$ problem, an efficient method are sought to find the controller coefficients through the LMI(Linear Matrix Inequalities) method by which the problem is formulated into a convex optimization problem.

Keywords

References

  1. D. C. Youla, H. Jabr, and J. J. Bongiorno, Jr., 'Modern Wiener-Hopf design of optimal controllers-part Ⅱ ; The multivariable case,' IEEE Trans. on Automatic Control, vol. AC-21, no.3, pp. 319-388, June, 1976
  2. D. C. Youla and J. J. Bongiorno, Jr., 'A feedback theory of two-degree-or-freedom optimal Wiener-Hopf Design,' IEEE Trans. on Automatic Control, vol. AC-30, no. 7, pp. 652-665, July, 1985
  3. J. C. Doyle, K.Glover, P.P. Khargonekar, and B.A. Francis, 'State space solutions to standard $H_2$ and $H_{\infty}$ control problems,' IEEE Trans. on Automatic Control, vol. 34, pp. 831-847, 1989 https://doi.org/10.1109/9.29425
  4. K. Park and J.J. Bongiorno, Jr., 'A general theory for the Wiener-Hopf design of multivariable control systems,' IEEE Trans. on Automatic Control, vol. 34, pp. 619-626, 1989 https://doi.org/10.1109/9.24230
  5. A. Ailon, 'Decoupling of square singular systems via proportional state feedback,' IEEE Trans. on Automatic Control, vol. 36, no. 1, pp. 95-102, Jan., 1991 https://doi.org/10.1109/9.62273
  6. P. N. Paraskevopulos and F. N Koumboulis, 'The decoupling of generalized state-space systems via state feedback,' IEEE Trans. on Automatic Control, vol. 37, no. 1, pp. 148-152, Jan., 1992 https://doi.org/10.1109/9.109653
  7. A. I. G. Vardulakis, 'Internal stabilization and decoupling in linear multivariable systems by unity output feedback compensation,' IEEE Trans. on Automatic Control, vol. AC-32, no. 8, pp. 735-739, Aug., 1987
  8. M. G. Safanov and B. S. Chen, 'Multivariable stability margin optimization with decoupling and output regulation,' in Proc. Conf. Decision Contr., pp. 616-622, Orlando, FL, Dec. 1982 https://doi.org/10.1109/CDC.1982.268216
  9. M. G. Safanov and B. S. Chen, 'Multivariable stability margin optimization with decoupling and output regulation,' IEE Proc., vol. 129, pp. 276-282, Nov., 1982
  10. C. A. Desoer and A. N. Gundes, 'Decoupling linear multiinput-multioutput plants by dynamic output feedback: An algebraic theory,' IEEE Trans. on Automatic Control, vol. 31, no. 8, pp. 744-750, 1986 https://doi.org/10.1109/TAC.1986.1104391
  11. J. J. Bongiorno, Jr., 'On the design of optimal decoupled two-degree-freedom multivariable feedback control systems,' in Proc. Conf. Decision Contr., pp. 591-592, Ft. Lauderdale, FL, Dec., 1985
  12. H. P. Lee and J. J. Bongiorno, Jr., 'Wiener-Hopf design of optimal decoupled multivariable feedback control systems,' IEEE Trans. on Automatic Control, vol. 38, no. 12, pp. 1838-1843, Dec., 1993 https://doi.org/10.1109/9.250562
  13. H. P. Lee, J. J. Bongiorno, Jr., 'Wiener-Hopf design of optimal decoupling controllers for plant with non-square transfer matrices,' International J. of Control, vol. 58, no. 6, pp. 1227-1246, 1993
  14. D. C. McFalane and K. Glover, Robust Controller Design Using normalized Coprime Factor Plant Descriptions, Berlin Springer Verlag, 1989
  15. S. Boyd, L. E. Ghoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and control Theory, Studies in Applied Mathematics, SIAM, Philadelphia, PA, vol. 15, 1994
  16. V. Balakrishnan and R. L. Kashyap, 'Robust stability and performance analysis of uncertain systems using linear matrix inequalities,' Journal of Optimization Theory and Applications, vol. 100, no. 3, pp. 457-478, Mar., 1999 https://doi.org/10.1023/A:1022626120665
  17. J. W. Brewer, 'Kronecker products and matrix calculus in system theory,' IEEE Trans. on Circuits and Systems, vol. CAS-25, no. 9, Sep., 1978
  18. H. P. Lee, Wiener-Hopf design of decoupled multivariable feedback control systems, Ph.D. dissertation, Polytechnic University, Farmingdale, New York, 1992
  19. 박기헌, '비결합 제어 시스템의 위너-호프 설계와 상태공간 계산 공식,' Report SKK-CAL-99-02, 1999
  20. C. Scherer, P. Gahinet and M. Chilali, 'Multi-objective Output-Feedback Control via LMI Optimization,' IEEE Trans. on Automatic Control, vol. 42, no. 7, Jul., 1997 https://doi.org/10.1109/9.599969