Prediction of Soil Distribution Using Digital Terrain Indices

수치 지형인자를 활용한 토양수분분포 예측

  • 이학수 (부산대학교 공과대학 청정공학협동과정) ;
  • 김경현 (부산대학교 환경기술.산업개발연구센타) ;
  • 한지영 (부산대학교 공과대학 환경공학과) ;
  • 김상현 (부산대학교 공과대학 환경공학과)
  • Published : 2001.08.01

Abstract

Several curvature parameters, solar radiation parameter and topographic flow generation parameters have been summarized and calculated to predict the spatial distribution of soil moisture content. The spatial distribution of soil moisture data can be obtained using Global Positioning System(GPS) and portable soil moisture monitoring equipment, Theta-Probe. Correlation analysis has been performed between the parameters of soil moisture prediction and measured data of soil moisture. Multiple regression analysis of soil moisture prediction shows the potential capability and limitations of existing methods of digital terrain analysis.

토양수분의 공간적 분포를 예측하기 위하여 지표면 곡률관련인자, 지형흐름인자, 태양에너지 복사인자들을 계산하였다. GPS와 토양수분측정기를 활용한 산지유역에서의 토양수분측정은 토양수분의 공간적 분포자료의 구축을 가능하게 했다. 측정된 토양수분자료와 토양수분 추정인자 사이의 상관관계를 분석하였다. 다중회귀분석을 통한 토양수분 추정인자와 토양수분의 공간적 분포상황에 대한 검토는 수치고도모형(DEM)의 분석을 통한 토양수분 추정능력의 가능성과 한계성을 보여주었다.

Keywords

References

  1. 김상현, 이지영 (1999) '개선된 지형지수산정 알고리즘의 적용에 관한 연구,' 한국수자원학회논문집, 한국수자원학회, 제32권, 제4호 .pp 489-499
  2. 이지영, 김상현 (2000) '지형적 특성을 고려한 지형 지수 산정 알고리즘에 관한 연구.' 한국수자원학회논문집, 한국수자원학회, 제33권, 제3호, pp. 179-188
  3. 윤용남 (1998) 공업수문학. 청문각, pp. 142-152
  4. 조홍제, 김정식, 이근배 (2000) 'TOPMODEL을 이용한 장기유출해석' 한국수자원학회논문집, 한국수자원학회, 제33권, 제4호, pp. 393-406
  5. Beven, K. J, and Kirkby, M. J (1979). 'A physically-based variable contributing area model of basin hydrology.' Hydrol. Sci. Bull., Vol. 24, pp. 43-69
  6. Bl o schl, G. (1999). 'Scale and Scaling in Hydrology: A Framework for Thinking and Analysis.' John Wiley, New York, in press
  7. Costa-Cabral, M. C, and Burges, S. J. (1994). 'Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas.' Water Resour. Res., Vol. 30, pp. 1681-1692 https://doi.org/10.1029/93WR03512
  8. Dingman, S. L. (1994). 'Physical Hydrology.' Macmillan, New York
  9. Dunne, T, Moore, T R. and Taylor, C. H. (1975). 'Recognition and prediction of runoff-producing zones in humid regions.' Hydrol. Sci. B., Vol. 20, pp, 305-327
  10. Dunne, T, and Black, R. D. (1970). 'Partial area contributions to storm runoff in a small New England watershed.' Water Resour. Res., Vol. 6, pp. 1296-1311
  11. Gallant, J. C. and Wilson, J. P. (1996). 'T APES-G: A grid-based terrain analysis program for the environmental sciences.' Computers & Geosciences, Vol. 22, No.7, pp. 713-722 https://doi.org/10.1016/0098-3004(96)00002-7
  12. Hutchins, R. B., Bevins, R. L., Hill, J D. and White, E. H. (1976). 'The influence of soils and microclimate on vegetation of forested slopes in eastern Kentucky.' Soil Sci., Vol. 121, pp. 234-241
  13. Jenson, S. K., and Domingue, J O. (1988). 'Extracting topographic structure from digital elevation data for geographic information system analysis.' Photogra: mmetric Engineering Remote Sensing, Vol. 54, No. 11, pp. 1593-1600
  14. Krcho, J (1973). 'Morphometric Analysis of Relief on the Basis of Geometric Aspect of Field Theory.' Acta UC, Geogr. Physica 1, Bratislava, SPN
  15. Krcho, J. (1991). 'Georelief as a Subsystem of Landscape and the Influence of Morphometric Parameters of Georelief on Spatial Differentiation of Landscape- Ecological Processes.' Ecology/CSFR, Vol. 10, pp. 115-157
  16. Lee, R., (1978). Forest Microclimatology. Columbia University Press, New York, pp. 276
  17. Mitasova, H., and Hofierka, J. (1993). 'Interpolation by Regularized Spline with Tension: Il. Application to Terrain Modeling and Surface Geometry Analysis.' Mathematical Geology, Vol. 25, No.6, pp. 657-669 https://doi.org/10.1007/BF00893172
  18. Moore, I. D., Norton, T. W., and Williams, J. E. (1993). 'Modelling environmental heterogeneity in forested landscapes' J. Hydrol., Vol. 150, pp. 717-747 https://doi.org/10.1016/0022-1694(93)90133-T
  19. Moore, I. D., Burch, G. J., and Mackenzie, D. R. (1988). 'Topographic effects on the distribution of surface soil water and the location of ephemeral gullies.' Trans. Am Soc. Agric. Eng., Vol. 31, pp. 1098-1107
  20. O'Callaghan, J. F., and Mark, D. M. (1984). 'The extraction of drainage networks from digital elevation data.' Computer Vision, Graphics and Image Processing, Vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  21. Quinn, P., Beven, K. J, Chevallier, P., and Planchon, O. (1991). 'The prediction of hillslope flow paths for distributed hydrologic modelling using digital terrain models.' Hydrologic Proccesses, Vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  22. Rektorys, K. (1969). 'Survey of Applicable Mathematics.' MIT Press, Cambridge, MA, Iliffe Books Ltd., London, pp. 365
  23. Troch, P. A, Troch, F. P., and Brutsaert, W. (1993). 'Effective watertable depth to describe initial conditions prior to storm rainfall in humid regions.' Water Resour. Res., Vol. 29, No 2, pp. 427-434 https://doi.org/10.1029/92WR02087
  24. Western, A. W., Grayson, R B., Bloschl, G., Willgoose, G. R, and McMahon, T. A (1999). 'Observed spatial organization of soil moisture and its relation to terrain indices.' Water Resour. Res., Vol. 35, No. 3, pp. 797-810 https://doi.org/10.1029/1998WR900065
  25. Western, A. W., Bloschl, G., and Grayson, R E. (2001). 'Toward capturing hydrologically significant connectivity in spatial patterns.' Water Resour. Res., Vol. 37, No 1, pp. 83-97 https://doi.org/10.1029/2000WR900241
  26. Zavlasky, D., and Sinai, G. (1981). 'Surface Hydrology, I. Expalanation of phenomena.' J Hydraul. Div. Am. Soc. Civ. Eng., Vol. 107, pp. 1-16