Water Engineering Research, Vol. 2, No. 2, 2001

89

THEORETICAL AND EXPERIMENTAL
INVESTIGATIONS OF
VELOCITY DISTRIBUTIONS FOR ROUND JETS

By 1l Won Seo', Mohamed S. Gadalrab’, Siwan Lyu?, and Yongsung Park’

' Assoc. Prof.,, Dept. of Civil Engincering, Seoul National Univ., Seoul, Korea
% Grad. Student, Dept. of Civil Engineering, Seoul National Univ., Seoul, Korca
* Researcher, N4Tech Water Co., Ltd., Anyang, Korea

Abstract: The theoretical treatments on jets, in which the flow is 1ssuing into a stagnant medium, have becn based on

Prandtl’s mixing theory. In this study, using Prandtl’s mixing length hypothesis, a theoretical relationship for the velocity

profile of a single round jet is derived. Furthermore, Gaussian expression is used to approximate the theoretical relation-

ship, in which the Gaussian coefficient is assumed to be decreasing exponentially as the flow goes far from the erifice.

Two data sets for a single round jet performed by two different technigues of measurement are used to verify the sug-

gested relationships. The theoretical and Gaussian distributions give close results in spite of the difference in approach.

The observed mcan velocity distributions are in good agreements with the suggested theoretical and Gaussian distribu-

tions.
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1. INTRODUCTION

The first analysis of turbulent jet mixing of
incompressible fluids was done by Tollmien
(1926) by application of Prandtl’s mixing length
theory. He solved the following problems: mix-
ing of a two-dimensional jet issuing from a very
narrow opening with a medium at rest; and
mixing of an axially symmetric jet escaping

from a very small opening with a medium at rest.

Reichardt (1942}, from the experimental data,
suggested an inductive theory, which corre-
sponds essentially to a constant exchange coef-

ficient over the mixing zone for the free turbu-

lence problem. Gortler (1942) reexamined
Tollmien’s problems by the application of
Reichardt’s assumption with some suggestions
from Prandtl, and obtained some improvements
in the velocity profiles in the jet.

An observer of the jet flow can notice that the
mean velocity exhibits a self-similarity and a
typical bell-shaped velocity distribution that is
well approximated by the Gaussian profile, Fig. 1.
The Gaussian distribution is in good agreement
with experimental data at some distance from
the point of release, ie., the zone of fully de-
vcloped flow (Davidson et al., 1993; Larsen,

1993; and Chu et al., 1999). This agreement can
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be explained from the nature of the phenomenon
itself, i.e., turbulence is mainly random motion
and the Gaussian distribution also represent
random phenomena, or it may be simply that
velocities tend to concentrate around its mean
values, which yields normal distribution so that
the Gaussian curve can fit them well. However,
a theoretical base is needed (o obtain the best
and universal Gaussian fit of velocity distribu-
tion.

In this paper, we look more closely at the
classical jet equations based on Prandtl’s hy-
pothesis. In particular, we attempt to derive a
new equation representing the velocity distribu-
tion for round jets based on the (aussian
distribution as  well as the theoretical
expressions derived using the mixing length
theory. Two sets of experiments are used to
verify the derived equations. The first data set
was performed by Yu ct al. (1998) and the
velocities were measured using an  acoustic
Doppler velocimeter for single jet discharged
into stagnant water. A special experimental
set-up was conducted for a single jet discharging
water through a stagnant water ambient with
different wvalues of relative density. Flow
velocities were collected using particle image
velocimetry. Finally, we try to answer the
following question: Can a velocity distribution
for a round jet be represented by a single

RNy DISTRIBUTIONS

2.1 Theoretical Solution

Let us consider a circular jet of diameter o,
emerging from a nozzle with a uniform velocity
of U, into a large stagnant mass of the same
fluid, as shown in Fig. 1. [f we observe the jet,
we would find that the size of the jet increases
steadily as it travels away from the nozzle. At

the end of the flow development region, the core
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velocity is equal to U, the turbulence generated
on the boundarics penetrates to the axis, and the
mcan velocity on the axis begins to decay with
distance. In the region of fully developed flow,
we find that at any section velocity decreases
continuously from a maximum value on the axis
to zero for large values of the radius. The veloc-
ity distributions at different distances from the
nozzle appear to have the same shape. It has
been experimentally found that the velocity dis-
tribution could be presented satisfactorily by a
Gaussian curve.

In the mixing length theory, Prandtl assumed
that both the longitudinal and the transverse
turbulent fluctuating velocities are proportional
to the transverse mean velocity gradient. We
write

weyd 28 (n

or

where u is the mean velocity in the z-direction,
i.c., the main flow directions; [ is the mixing
length; and " and v'arc the z- and r- compo-
nents of the fluctuating velocity, respectively.
The rate of increase of the width, A, of the mix-
ing zone with respect to time is comparable with
the fluctuating velocity component across the

flow. If we replace the mean valuc of % asa

first approximation by U/b, where U is the
maximum velocity at the axis of the jet in the
mixing region, we then have
Db
ar

Y @

The first assumption in Tollmicen’s theory of
free turbulent flow is that //b is assumed to be

constant across a given section of the mixing
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For steady flow, we have

= constant (4a)

z

b=Ciz+C, (4b)

where C, and C; are constants. Eq. (4) shows
that the spread of a turbulent jet increases line-
arly with z, the distance along the axis of the jet.

The equation of motion in cylindrical coordi-

nates is

dv Su I arr
+ —

v —t+tu —=——o

5
r dz pr or ®)

where p is the fluid density and 7 is the shear

stress. The equivalent expression for the kine-

matic momentum, K, in the z-direction is

K=—=2nx ;2 v dr = constant (6)

v |~

D t— 8

where J is the momentum flux, The eddy vis-
cosity, £ , is assumed to be constant throughout
the mixing region of the jot. The equation of
motion becomes

~gv - ou_&d ( ou
i =+ v |,.2% 7
"ar “az rar (’ ar} 7

The pressure gradient can be neglected because
the constant pressure in the surrounding fluid
impresses itself on the jet. Prandti’s hypothcsis
leads to
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du du u
u _:+\' E=E 8'3 (8)
The continuity equation is
ii(rv)Jrﬁi(rw):O (%)
rdr dz

The width of the jet will be taken to be pro-
portional to 2°, it being further assumed that the
stream function y ~ 2" F(n) withn =»%=".  The
exponents p and # will be determined from the
conditions of constant kinematic momentum and
the inertia, and frictional terms in the equation

of motion must be of the same order of magni-

tude, so that, p = n = 1. Consequently, we may
now put
w=ezF(n) (10

And the velocity components are

u=-¥_£F (n
& z
1,=5_w=£[p'_£J (12)
Jz oz 7

Inserting Eqgs. (11)-(12) into the equation of mo-
tion, Eq. (8), we obtain

~f -y 2 - " '
F‘f FOEE :i(p”i} (13)
wooon noodn 7
Integrate once
F F'=F'-n F" (14)

If F(n) is a solution of the above equation, then
F(m nj = F(&), where m is a constant of integra-
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tion, is also a solution of the differential equa-
tion, which satisfies the boundary condition: /=
0,F,=0atf=0,

FEo=o sl (15)

Integrating once and using the boundary condi-

tions,

EF-2F+L pl=0 (16)

A particular solution of Eq. (16} is given by

Fot a7n

Hence, we obtain Eq. (18) from Eq. (11)

g 2 m‘?
w== (18)
z ]+§ éﬁz

From Eq. (6), we obtain

K=271'J'u2rdr=£:rm" £l (19)
f

3 K i
- 20
! 87152(1+L§3)2 0)
5:1 iﬁf_ 21
4Vr g =

Now, the cmpirical constant is equal to
m=vKile .
performed by Reichardt, the width of the jet is
given by

According to the measurement
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b=0.0845 z (22a)

£=1.286 atu=1/2U - {22b)

Substituting the preceding value of & into Eq.

(21), we get
b=52Tze/ VK (23)

Equating the preceding two values of b, we
get &/K =0.0161. Substituting this into Eq.
(20) using u = 1/2U as well as Reichardt results’
of b and £ we get

JE=159bU (24)
Finally, we can rewrite Eq. (20) as follows

e —— (25)

The above equation has the same form as that
of Daily and Harclman’s (1966) equation in
spite of the fact that their approach is different
from the theoretical method proposed in this
study. The theoretical cquation derived by Daily

and Harelman (1966) is given as

= 4]____ (26)

[1+62.5( ) ‘T

2.2 Gaussian Approximation

=

|

In the fully developed flow region, the trans-
verse distribution of the mean velocity in the
z-direction, i.e. the variation of u with » at dif-
ferent sections, has the same geometrical shape
as shown in Fig. 1. At every section, u decreases
continuously from the maximum value of U/ on
the axis to zero at some distance from the axis.
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Fig. 1. Development of Similar Velocity in a Round Jet

Let us now try to compare the distributions at e o
. . . . - —=eX N

different sections in a dimensionless form. At v P z

each section, let us make the velocity w dimen-
sionless by dividing it by {/ at that section and
plot #/lJ against r/z. We will find that the veloc-
ity distributions at different sections fall on one
common ¢urve, The velocity profiles at different
sections that can be superposed in this manner
are said to be similar (Pani and Dash, 1983; Ra-
jaratnam, 1967),

An essential characteristic of turbulent motion
is that the turbulent fluctuations are random in
nature. Hence the final and logical solution of
the turbulent flow problem requires the applica-
tion of methods of statistical mechanics. During
the initial phases of the jet flow the velocity
distribution will be dominant by the issuing ve-
locity but the velocity will always decrease
gradually with time and asymptotically the dis-
tribution will become Gaussian. This assump-
tion is necessary in order to obtain the distribu-
tion. A typical velocity distribution across the
jets and plumes is closely approximated by
Gaussian profiles as follows

here ¢ is an arbitrary constant.

A number of investigators suggested different
values for ¢ based on their experimental results.
A few of them are listed in Table 1. As shown in
this table, values for ¢ vary in quite a large range.
Thus, in this study, in order to get the best value
of the parameter ¢, the Gaussian cquation is fit-
ted to the theoretical distribution. Fig. 2 shows
the relation between the parameter ¢ vs. the di-
mensiornless distance r/z, where it is clear that ¢
decreases as r/z increases. The parameter ¢ is
varied exponentially with respect to r/z. It has
been found that the parameter is given by

Table 1. Different Values of Gaussian Coefficients

Investigator c
Reichardt (1951) 48
Sohlichting (1979} 72
Yu ct al. (1998) 78
Hinze (1959) 108
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(28)

c=cxp [ 2,75 (i) + 4.6) }

Hence, the suggested Gaussian velocity profile

can be written as

oo ol ()20 ) (]

(29)

3. EXPERIMENTAL
INVESTIGATIONS

In order to test the applicability of the derived
equation, it was necessary to devisc an experi-
mental configuration where the ambient water is
stagnant, The expcrimental sct-up is illustrated
in Fig. 3. The experiments werc carried out in a

glass-walled tank 6.0 m by 1.2 m in cross sec-
tion and (.8 m deep, filled with freshwater to a
depth of nearly 0.7 m. Heated water was dis-
charged through a circular nozzle 10 mm in di-
ameter set near the bottom of the freshwater
tank. Supply tank was provided with a boiler so
that the heated water could be mjected into the
freshwater tank through a main control valve.
The supply of heated water was tumed on and
flowed at a constant rate and temperature
throughout the run. Five cases of cxperiments
were performed to measure the velocity distri-
bution at various distances from the nozzle
through the investigated area. Table 2 shows the
data sets and variation of parameters.

Flow visualization and particle image ve-
locimetry (PIV) were used to investigate the jet
flow in a longitudinal cross-section. Fig. 4
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Table 2. Initial Parameters of Experiments

95

U
Ho| T | T | % o U | Fmge—=2r | o Yo
Case (cm) ('C) €0 g.=g ~ {m/s’) (m/s) ] gfo dp Re= _v_
VI10t 67.3 20 12.12 0.012 0.567 48.2 5484
VI102 67.3 25 12.22 0.023 0.531 350 6137
VJ103 67.3 30 12.30 0.035 0.509 313 6656
V104 67.5 35 i4.17 0.052 0.587 24.7 7632
VIS 67.5 40 14.95 0.069 0.500 19.8 7842
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?‘—\-:: /i. ¥
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Fig. 4. Schematic Diagram of PIV System

shows the set up of the PIV system. A light
sheet from a 32 ml/pulse Nd-YAG laser was
used to illuminate a plane through the centerling
of the nozzle, and the dyed jet was recorded on a
computer. PIV experiments were performed
using a TSI Particle Image Velocimetry sysiem
based on cross-correlating pairs of images to
avoid directional ambiguity. A Kodak Megaplus
ES 1.0 CCD camera (10161008 pixel resclu-
tion) positioned perpendicular to the light sheet
was used to capture the images in a 27.02(H)
X27.45(V) em region of the flow. The jet liquid
was seeded with hollow glass spheres (mean
diameter: 8 ~ 12 pm, specific gravity : 0.1 ~ 1.5
g/ce). Based on an analysis by Raffel et al.
(1998), these particles will follow the fluid mo-
tion for velocity fluctuations at a significantly
higher frequency than those cncountered in the
flow.

The images werc obtained in planes paraliel
to the jet axis at 30 Hz for 2 seconds. INSIGHT

software from TSI was used to process the im-
ages. Among the measuring schemes provided
by INSIGHT software, the 2-frame cross-corre-
lation technique was applied. During the proc-
essing, each image 15 sub-sampled into smaller
windows called intcrrogation spots and the
velocity is measured within each zone by per-
forming a cross-correlation with a zone in a
subscquent image. The location of the cross-
correlation peak with respect to the origin in
correlation space determines the average particle
displacement within the interrogation zone from
one image to the nexi. Dividing by the time be-
tween images yields the mean velocity.

Besides the experimental data obtained in this
study, velocity data collected by Yu et al. (1998)
were also used to verify the theoretical relations.
Yu et al. (1998) performed laboratory experi-
ments on vertical jets discharged into stagnant
water. In their experiments, both fresh water and
heated water were used as the discharging fluid.
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Table 3. Experimental Parameters of Vertical Jet Experiments by Yu et al. (1998)

Case H [AT,| U, Initial Volume Initial Momentum Initial Buoyancy | Fr=g- Yo
{cm} | (°C) | (m/s) Flux (¢m’/s) Flux (cm'/s?) Flux (cm*/s”) gy

SIt [ 45 | 0.0 | 0.85 66.8 5674.3 0.0
SI2 | 45 |10.7] 0.85 66.8 3674.5 142.3 582
S)3 | 45 | 163 0.17 133.5 22698.0 528.7 853
SJ4 | 25 [185] 0.34 267.0 90792.0 1258.8 156.6

' o

i Eq [(27): s w4E

g ok E;rzn;c-rz

Eq{alic =78

LE I Eq{27);c= 108

Fig. 5. Theoretical and Gaussian Distributions

The jet nozzle was 4.3 mm in diameter, and set
near the bottom of the freshwater tank of which
the dimensions were 4.9X15.5%0.6m. In meas-
uring the velocity of the single jet, they used the
acoustic Doppler velocimeter (ADV). Experi-
mental parameters are illustrated in Table 3.

4. ANALYSIS OF RESULTS

Fig. 5 shows the theoretical relationship, Eq.
(25), and proposed Gaussian cquation, Eq. (29)
as well as the other Gaussian curves with the
coefficients listed in Table 1. As shown in this
figure, the Gaussian curve with the coefficient
proposed in this study, Eq. (29), fits the theo-
retical equation quite well throughout the whole
extent of r/z. The Gaussian curve with the coef-
ficient proposed in this study is slightly high up
to 0.2 #/= and then coincides perfectly with the

theoretical curve. However, Gaussian curves, Eq.

(27) with coefficients of single constant values
given in Table 1 either overestimate or underes-
timate. Among the coefficients given in Table I,
¢ = 72~78 give the reasonable fit to the theo-
retical curve even though these Gaussian curves
have tendency, near the center of the jet, to
overshoot the theoretical curve and undershoot
the theoretical curve at the wing side of the jet.
Daily and Harleman (1966) also maintained that,
at both center and wing side of the round jet,
Gaussian curves with single constants give ve-
locity distributions which are different than
those by experiments and the theoretical solu-
tion. This is simply because Gaussian curve is
the only approximation of the thcoretical solu-
tion, in which equations of motion and continu-
ity are solved analytically for the velocity dis-
tribution of the jet.

The lateral velocity distributions at different
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axial distances for cach case are shown in Fig, 6.
In these figures, velocity profiles are similar.
The velocity profiles tend to follow Gaussian
distribution from the beginning of the zone of
cstablished flow. The longitudinal variations of
jet width against the axial distance for each case
are shown in Fig. 7. In this figure, b is the value

L]
t/dp
Fig. 6. Lateral Velocity Distributions for Each Case

t 2

of r where u is equal to l/e of the maximum
velocity at the jet axis, The jet width & is speci-
fied by the function of the form as

db =f {di} + const

P I3

(30)
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Fig. 8. Comparison Among Theoretical Solution and Different Gaussian Forms for PIV Data

A number of experimental investigations
{Fischer et al., 1979) involving a single round jet
show that length scale b of a single jet is linear
to the longitudinal distance. They postulated that

the average value of b/z, referred to the width

parameter, is 0.107. Here, in this study, average
value of b/z, which is the slope of the linear
equation plotted in Fig. 7, is 0.10.

Figs. 8 and 9 show a graph of dimensionless

veloeity against the dimensionless distance from
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Fig. 9. Comparisons Among Theoretical Selution and Different Gaussian Forms for ADV Data

the jet orifice, #/z, for theoretical and (Gaussian ments to verify the theoretical relation of the
distributions as well as the experimental data of  mixing length theory and the Gaussian distribu-

this study and Seo et al. (1998). Both the theo- tions. The most significant conclusion that can
retical equation, Eq. (25), and proposed Gaus- be drawn from this study is that the Gaussian
sian curve, Eq. (29), give good agreements with equation may provide a valuable and accurate
the experimental data across the entire jet width. feature of the velocity distribution if we con-
The Gaussian curve, Eq. (27), with ¢ = 48 over- sider the fact that the parameter ¢ in the Gaus-
estimates whereas the Gaussian curve with ¢ = sian equation is a function of dimensionless dis-
108 underestimates. As mentioned earlier, tance, #/z. In other words, instead of a constant
among the coefficients given in Table |, ¢ = value of ¢ we should apply Gaussian distribution
72~78 give the reasonable fit to the experimen- with a varying coefficient with respect to r/z.

tal data. Table 4 shows RMS values for the Comparisons between theoretical and Gaussian
theoretical and different Gaussian solutions. It is equations and experimental results reveal that
clear that the minimum error among (Gaussian both the theoretical equation and the Gaussian
distributions is given by Eq. (29). curve with a varying coefficient proposed in this
study give good agreements across the entire jet
5. CONCLUSIONS , . .
width. The Gaussian curve with ¢ = 48 overes-

With the purpose of examining the velocity timates whereas the Gaussian curve with ¢ =
distribution in a single round jet, this paper has 108 underestimates. Among the coefficients

discussed the results from laboratory experi- given by previous investigators, Gaussian curves

Table 4. RMS Errors of Different Distributions

. Gaussian Distributions

Cases Theoretical Sol.

Variable ¢ ¢ =48 c=72 c="78 c=108
Vi 0.077 0.078 0.104 0.084 0.087 0.088
V102 (.094 0.096 0.127 g.115 0.097 0.091
VI103 0.104 0.108 0.138 0.101 0.112 0.105
VI104 0.086 (.086 0.107 (.091 0.089 0.092
VI105 0.12 0.12 0.128 0.126 0.131 0.138
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with ¢ = 72~78 give the reasonable fit to the

experimental data.
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NOTATIONS

The following symbols are used in this paper:
b = half width of the jet flow;
C & C, = constants;
¢ = (GGaussian parameter;
H = water depth;
d, = jet diameter;
F = dimensionless velocity function;
Fr; = densimetric Froude number;
g = gravitational acceleration;
go = effective gravitational acceleration;

J = flux of momentum;
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K = kinematic momentum,

[ = mixing length;

m = constant;

p and 1 = exponents;

Re; = jet Reynolds number;

¥ = coordinate perpendicular to the flow direc-
tion for cylindrical system;

T = temperature;

T, =jet issuing temperature;

t = time;

U = maximum velocity at the jet axis;

U, = jet issuing velocity;

# = component of the velocity in the direction

concentric with the centerline of the jet;

v = component of the velocity in the direction
perpendicular to the centerline of the jet;

z = coordinate in the flow dircction for cylindri-
cal system;

1 & &= dimensionless distance;

2 = density;

7= shear stress;

101

i = stream function; and
&= eddy viscosity,
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