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Abstract: The frequency analyses for the precipitation data in Korea were performed. We used daily maximum series,
monthly maximum series, and annual series. For nonparametric frequency analyses, variable kemel estimators were
used. Nonparametric methods do not require assumptions about the underlying populations from which the data are
obtained. Therefore, they are better suited for multimodal distributions with the advantage of not requiring a distribu-
tional assumption. In order to compare their performance with parametric distributions, we considered several probabil-
ity density functions, They are Gamma, Gumbel, Log-normal, Log-Pearson type IIl, Exponential, Generalized logistic,
Generalized Pareto, and Wakeby distributions. The variable kemel estimates are comparable and are in the middle of the
range of the parametric estimates. The variable kernel estimates show a very small probability in extrapolation beyond
the largest observed data in the sample. However, the log-variable kernel estimates remedicd these defects with the

log-transformed data.
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1. INTRODUCTION

‘When designing a hydrosystem to control and
use of water resources, a frequency analysis
based on hydrological data is one of the most
important element for designing and planning an
economical hydrosystem. Generally, the rainfall
data can be easily observed than the flood data
in Korea. Therefore, in this paper a comparison
of parametric and nonparametric techniques for
probability precipitation in Korea is presented.

A currently used approach to frequency
analysis is based on the concept of parametric
statistical inference. In these analyses, the as-
sumption is made that the distribution function
describing precipitation data is known. Distribu-
tions that are often used are Log-normal, Pear-
son Type III, Gumbel, extreme value distribu-
tions, Gamma, and others by using the method
of moment (MOM), maximum likelihood (ML),
(PWM), or
L-moment. However, such an assumption is not

probability weighted moment



always justified. Some difficulties associated
with parametric estimation are (1) the objective
selection of a distribution, (2) the reliability of
distributional parameters (especially for skewed
data with a short record length), (3) the inability
to analyze multimodal distributions, and {4) the
treatment of outliers. The probability weight
moment (PWM) method (Greenwood et al.,
1979; Hosking, 1989, etc.), L-moment method
(Hosking, 1990), or others have been comple-
mented the problems of skewed data with a
short record length. Nevertheless, in the process
of parametric frequency analysis, the choice of
best fitted distribution among the other distribu-
tions which are passed the goodness-of-fit tests
(% test, Kolmogorov-Smirnov test, Cramer von
Mises test, etc) is still not a easy task. Also, the
analysis of bimodal probability density function
has many complicated problems when the data
has a mixed distribution. The assumption of a
pre-chosen distribution, which is based on
goodness-of-fit tests and selected as the most
appropriate distribution, is no longer valid if the
size of the data available is increased. Therefore,
parametric techniques may be inadequate for
reliable frequency estimates.

The problem is to estimate the probability
density function. Since the true distribution is
unknown, we have to resort to use a nonpara-
metric approach. The histogram has historically
been the choice in estimating the probability
density function of a sample in a nonparametric
fashion. This method requires that a suitable bin
width and starting position be chosen to obtain a
decent result. However, estimation using this
approach can be subject to large errors. If the
number of bins chosen are too small, the result-
ing probability density function is oversmoothed
thereby obscuring potentially important details.
On the other hand, the use of too many bins may
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result in a ragged looking distribution.

In recent years, nonparametric kernel density
estimation methods have been introduced as
viable and flexible alternatives to parametric
methods for flood frequency analysis or prob-
ability precipitation estimation. Several non-

“parametric approaches have been introduced by

Adamowski (1985, 1989, and 1996), Ada-
mowski and Feluch (1990), Adamowski and
Labatiuk (1987), Lall et al. (1993), Moon et al.
(1993), Moon and Lall (1994 and 1995), and
Moon (2000). Nonparametric methods do not
require assumptions about the underlying popu-
lations from which the data are obtained. Also,
they are better suited for multimodal distribu-
tions. Usually, nonparametric kernel density
estimator was relatively consistent across the
estimation situations considered in terms of bias
and root mean squares error (RMSE) with the
advantage of not requiring a distributional as-
sumption while providing a uniform procedure
{Lall et al., 1993; Moon et al., 1993).

Even though many people have shown that
the nonparametric method provides a better fit
to the data than the parametric method and gives
more reliable flood or precipitation estimates,
the nonparametric method implies a very small
probability in extrapolation beyond the highest
observed data in the sample. In this paper, we
tried to show a remedy for these inadequacies by
introducing a log-estimator which is a probabil-
ity density function for log-transformed data,
Inx; if x;, Xs, ..., X, are random variable. The
extrapolation is based on the shape of the kernel
density function assumed and on the value of
bandwidth h. Thus, only a few observations
contained in the bandwidth h influence the ex-
trapolation to the tail of the distribution. How-
ever, it is possible to remedy these defects by
applying the nonparametric kernel estimator to
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log-transformed data.

2. PARAMETRIC/NONPARAMETRIC
FREQUENCY ANALYSES

Which distribution is best for the precipitation
data in Korea based on parametric frequency
analyses? The question of which distribution
gives the best fit may be decided by using the
chi- squared statistic and Kolmogorov-Smirnov
tests. As shown in Fig. 1, the parametric fre-
quency analyses were considered all the distri-
butions available, The parameters of selected
distributions were estimated from the method of
likelihood,
ity-weighted method, and L-moments. Then, we

moments, maximum probabil-
assumed a particular distribution which was
selected from goodness-of-fit tests among the

other several distributions to regard it as a

population's distribution and progress to analyze.

This paper applied Normal distribution, two
parameter Log-Normal distribution, three pa-
rameter Log-Normal distribution, three parame-
ter Gamma distribution, Log-Pearson Type I

distribution and Generalized Extreme Value
distribution to precipitation data in Korea. The
goodness of fit tests was applied to x” test for
probability density functions
gorov-Smimov test for cumulative distribution

and Kolmo-

functions with 5% significance level.

Rosenblatt (1956) introduced the nonpara-
metric kernel density estimator, defined for all
real x by

f(x)=_1_Z%K(X—hXi) (1)

nig
where x, . . ., x, are independent identically
distributed real observations, K(-} is a kernel
function, and h is a positive smoothing factor
assumed {o tend to zero as n tends to infinity.
Silverman (1986) explained the basic concept of
the nonparametric kernel density estimator.
From the definition of a probability density, if
the random variable x has density f(x), then

Observed data

Apply to the probability distributions
(Normal, LN3P, Gamma, GEV, Wakeby LPII, etc)

Estimate parameters (Method of Memens, Maximum Likelihood,
Probability-Weighted Method, L-Momens)

Goodness-of-fit test
(%" test, Kolmogorov-Smirnov test,
Cramer von Mises test, etc)

I
‘ Determine probability distribution |

[ Frequency analysis I

Fig. 1. The procedure of parametric frequency analysis
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fix)=lim—px-h<X<x+h 2
{x) ha02hp( ) 2

For any given h, P(x-h < x < x+h) can be esti-
mated by the proportion of the sample falling in
the interval (x-h, x-+h). Thus, a natural estimator
is given by choosing a small number h and set-
ting

3
X, fallingin (x -h, x + h}]

To express the estimator more transparently,
define the weight function w(x) by

1.
w(x) =47’ if abs(x) <1 ()
0, otherwise

Then it i1s easy to see that the estimator can be
written as

n

f(x) = %Z%W(X_TX]J (5)

i=t

it follows from equation (5) that the estimator is
constructed by placing a box of width 2h and

Table 1. Typical kernel functions
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height (2nh)' on each observation and then
summing to obtain the estimator. This weight
function is the kemel function which satisfies
the condition

X-Xi

J‘K(t) dt=1, wheret= (6)

The kemnel function is usually required to be
unimodal with peak at x = 0, smoothness, and a

symmetric function, that 1is, a density
( j K(tdt=1) with  expectation 0
{ j tK(t) dt = 0) and finite variance

( J' t*K(t) dt = constant ).

When applying the method in practice, it is
necessary to choose a kernel function and a
smoothing parameter. Some useful kemnel func-
tions are given in Table | and Fig. 2. Usually,
different kernels should be examined depending
the objective. For example, if continuity and
differentiability of the density is needed, one
may choose a kermel with infinite support rather
than one with finite support.

While the choice of kernel does not seem to
be critical, the choice of smoothing factor is
quite a different matter. The value of h is critical

Kemel K(t)
Rectangular 1/2 for )t‘ <1, 0 otherwise
. 1 1
Gaussian exp| - —
N2 2
3 1
Epanechnikov z(l—gtz}’ﬁ for |t| < J§

Rajagopalan

3h
1—4h?

(lftz),where |tl£1

Cauchy

1
z(1-1%)
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Fig, 2, The Shape of Kernel Functions
and, in practice, not obvious. Too large an h o I t
- !. P . g- F"(x)=I Z K X; dt
implies large bias, an oversmoothed estimate, —©#=nhd;, | hdy
N

and consequent loss of information. Too small
an h implies large variance and too rough an
1987).
Since all error measures depend on the unknown

estimate (Adamowski and Labatiuk,

density, generally they cannot be used in deriv-
ing analytical expressions for selecting the
smoothing factor h. Several measures of per-
formance for using the data to produce suitable
values for the smoothing parameter h have been
proposed. The smoothing parameter h can be
obtained by Maximum Likelihood Cross-Vali-
dation (Habbema et al, 1974; Duin, 1976),
Least Squares Cross-Validation (Hall, 1983;
Hall and Marron, 1987; Stone, 1984), Breiman
et al. Method (Breiman et al., 1977), and Ada-
mowski Cross-Validations (Adamowski, 1985).

Lall et al. (1993) demonstrated that one
should directly focus on kernel distribution
function estimates rather than kemel density
estimates. The variable kernel estimate F,(x) of
the cumulative distribution function F(x) is de-
fined as :

where K(t) is a kernel function, h is a bandwidth,
dix is the distance from x; to its k th nearest
neighbor, and K'(t)= r K{u)du.

Lall et al. (1993) provide a review of this
discussion and compare the performance of dif-
ferent kernels and bandwidth selection methods
in the flood frequency context. They found that
the variable kernel estimator with heavy-tailed
kernel (Cauchy) and bandwidth selection based
on Adamowski criteria (VK-C-AC) led to the
best tail estimates using kernel methods. The
Caunchy kernel is a heavy tailed kernel and may
have a better capacity for cxtrapolation, particu-
larly with heavy tailed densities.

3. RESULTS

The frequency analysis for the precipitation of
26 sites in 5 basin areas (i.e. Han River, Nak-
dong River, Keum River, Sumjin River, Yeong-



Table 2, Precipitation data of Han River area
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Area Site Year Data size Missing Year
Seoul 1907~ 1998 85 1907.1-1097.9, 1950.9~1953.11
Han River| Inchon 1949~1998 50 1950.6~1951.9
Chungju 1973~1998 26 -

san River in Korea), which are under control of
the Korea Meteorological Office, were per-
formed. We used daily maximum series,
monthly maximum series, and annual series. [n
order to select an appropriate distribution, 17
probability density functions were considered

5%.

For nonparametric frequency analyses, vari-
able kernel density function and log-variable
kernel density function estimators were used
with Cauchy kemel and bandwidth selection
Adamowski criteria (VK-C-AC).

for the parametric method. They are Gamma 1, The precipitation data of Han River area is

Gamma I, GEV (Generalized Extreme Value),
Gumbel (Extreme Value type 1), Log-Gumbel,
Log-normal II, Log-normal III, Log-Pearson
type I, Weibull I], Weibull III,.Exponential,
Normal, Pearson type I, Generalized logistic,
Generalized Pareto, Kappa and Wakeby distri-
butions. The distribution parameters were esti-
mated by method of moments, maximum like-
lihood, probability weighted moments, and
L-moments method. The goodness-of-fit test for
the parametric distribution applies Kolmogorov-
Smirnov test and y” test with significant level of

0.004
| Seoul
0.003 . Inchon
£(x)0.002 - A
0.001 -
0.0004—2 T

400 800 1200 1600 2000 2400
Precipitation (mm)
Fig. 3. PDF of annual precipitation of Han River

shown in Table 2. In this paper, we presented
just the data and the results of Han River area to
save the space.

The Figs. 3~35 represent the probability den-
sity functions (PDF) of annual precipitation
amounts, monthly maximum precipitations, and
daily maximum precipitations for Seoul, Inchon,
and Chungju stations respectively. From the Fig.
3~5, we observed bimodal distributions in
Seoul and Chungju stations, and multimodal one
for Inchon station. In those cases, a difficulty
associated with parametric approach is the in-

0.004
| Seoul
0.003 U Inchon
f(x)0.002 -
0.001 -
OOOO T T T T T T T
0 400 800 1200 1600

Precipitation (mm)

Fig. 4. PDF of monthly maximum precipitation for
Han River
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Table 3. Probability precipitation of each return period (mm, : maximum or minimum)
Site Seoul Inchon Chungju
Return Period (vear) 100 200 100 200 100 200

Log-Variable Kernel 2365.6 24239 2146.8 26104 2005.3 22547
Variable Kemel 2353.9 2356.9 2023.1 2005.4 1891.0 1898.5
Exponential 2248.2 2453.6
Gamma 22159 23358 1792.0 18748 1879.9 1970.8
GEV 2330.8 2486.6 2014.2 2151.0
G-Logistic 24422 2696.1 2099.4 23151
Log-Normal 2330.8 2493.4 2009.7 2148.0
G-Parato 18343 1872.5
Gumbel 2401.9 2590.2 2039.8 2188.5
Normal 1713.9 1774.5 1790.7 1856.3
Pearson typell 2309.0 2456.5 0L 21111
Wakeby 23303 24584

ability to analyze multimodal distributions.
Therefore, parametric estimation techniques are
inadequate for modelling such an annual maxi-
mum process. However, nonparametric methods
do not require assumptions about the underlying
populations from which the data are obtained.
Therefore, they are better suited for multimodal
distributions with the advantage of not requiring
a distributional assumption.

A comparison among the parametric and the
nonparametric distribution estimators of the
quantile function for Seoul, Inchon, and
Chungju data are shown in Fig. 6~ 8. Here the
method of parametric estimation for parameiric
methods is considered with L-moments. The
maximum and minimum recorded precipitations
are presented in Table 3. The parametric esti-
mates of the 100-year precipitation range from
2,216 to 2,442 mm in Seoul, from 1,791 to
2,248 mm in Chungju per year respectively. The
log-variable kernel and variable kernel are
comparable and are in the middle of the range of

the parametric estimates. As shown Fig. 7, only
Gamma and Normal distributions were passed
the goodness-of-fit test for Inchon station. The
variable kernel estimates in Figs. 6 ~8 shows a
very small probability in extrapolation beyond
the 50-year return period (i.e., the quantiles be-
vond the 50-year are almost the same). However,
the log-variable kermel estimates (i.c., variable
kemel estimator applied to log-transformed
data) remedied these defects with the log data.

4. CONCLUSION

The frequency analysis for the precipitation
data of 26 sites in 5 basin areas in Korea were
performed. We applied nonparametric variable
kernel estimators, log-variable kernel estimators,
and 17 selected parametric distribution estima-
tors to daily maximum series, monthly maxi-
mum series, and annual series. Since the results
of the parametric estimators varied according to
the distributions and the methods of the para-
metric estimation, it is not easy to say which



parametric cstimator is the best. However, for
each data set, the nonparametri¢c variable kernel
estimator with the Cauchy kernel and Ada-
mowski's bandwidth selection is shown to be
competitive with any parametric distribution
estimators and has the advantage of not requir-
ing a distributional assumption. In particular, the
nonparametric kernel cstimators (variable and
log-variable kernel estimators) worked better
than the parametric estimators for multimodal
data. This ability to analyze multimodal density
by the nonparametric method is particularly
useful in hydrology. Even though only a limited
data set was available and estimation outside the
range of data was wanted, the log-variable ker-
nel estimator provided good results in the upper
tail compared with the variable kernel estimator,
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