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A real time method of vehicle system dynamics
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compatible.

Super computers has been utilized to carry out vehicle dynamics in real time. This research propose an implicit integra-
tion method for vehicle state variables. Newton chord method is employed to solve the equations of motion and con-
straints. The equations of motion and constraints are formulated such that the Jacobian matrix for Newton chord method is
needed to be computed only once for a dynamic analysis. Numerical experiments showed that the Jacobian matrix generat-
ed at the initial time could have been utilized for the Newton chord iterations throughout simulations under vartous driving
conditions. Convergence analysis of Newton chord method with the proposed Jacobian updating method is camied out.
The proposed algorithm yielded accurate solutions for a prototype vehicle multibody maodel in realtime on a 400 Mhz PC
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1. Introduction

Realtime sirulation capability has introduced a new con-
cept of virtual prototyping in designing and testing of the
mechanical systems. Several sophisticated vehicle driving
simulators have been developed and used for design, test-
ing, and medical and safety studies[1, 2].

High performance computers have been used for realtime
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simulation of multibody vehicle dynamics models consist-
ing of many bodies and joints, a drive train model, stabi-
lization bars, and tires. Vehicle models have been ofien
simplified to run the models in realtime on relatively low
cost computers such as PC compatibles. This research
develops an efficient implementation algorithm with an
implicit integration method and the relative generalized
coordinate formulation so that the relatively low cost com-
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puter can be used for the realtime simulation of the multi-
body vehicle dynamics models without sacrificing model-
ing details.

The implicit integration method requires to generate and
solve linear systems of augmented equations of motion and
nonlinear systems of constraint equations [3,4]. The most
time taking processes associated with the implicit methed
are generation and LU decomposition of the coefficient
matrices of the augmented equations of motion and con-
straint Jacobian at every time steps. In order to save the
computation time in these processes, Newton chord method
is employed and the governing equations are formulated
such that Jacobian matrices for Newton chord method need
to be updated once in many integration steps. Convergence
analysis of Newton chord method with the proposed Jaco-
bian updating method is carried out for a prototype vehicle
model.

Natural coordinate method was proposed by Garcia and
applied for realtime simulation in Refs. [5,6]. The velocity
transformation method has beer developed by Wittenburg
in Ref. [7]. Graph theory has been successfully applied to
handle general mechanical systems with the relative gener-
alized coordinates [8,9]. Featherstone has developed a
recursive formulation for the equations of motion [10].
Computational cost has increased only linearly to the num-
ber of bodies in a system. The recursive formulation has
been extended to general systems having closed loops in
Ref. [11] and having flexible bedies in Ref. [12]. Varia-
tional vector calculus has been used to systematically
derive the individual recursive formulas for the mass
matrix, the constraint Jacobian matrix, and the generalized
forces. The individual recursive formulas are categorized
into several types and are generalized in this research to
efficiently compute the residuals of Newton chord method.

Section 2 presents a protoiype vehicle model. Kinemat-
ics and generalized recursive formulas for the vehicle are
developed in section 3. A solution method for the overde-
termined differential algebraic equations arising from the
vehicle equations of motion and constraints is presented in
section 4. Numerical algorithm is proposed in section 5.
Numerical experiments are carried out in section 6. A lane
change, J-tum, and bump run maneuver simulations of the
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vehicle model are performed to show the effectiveness and
validity of the proposed method. Conclusions are drawn in
section 7.

2. A multibody vehicle model

Rack & Pinion

Fig. 2 4-links suspension

Though the proposed method is applicable to general
multibody vehicle models, presentation focuses on a proto-
type vehicie model which consists of suspension, steering,
drive train, and tire subsystems,

The prototype vehicle employs the MacPherson strut
front and 4-link type rear suspension systems. The
schematic diagram of both suspension systems are shown
in Figs. 1 and 2, respectively. The MacPherson strut sys-
tem consists of a lower control arm, a wheel knuckle, a
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Table 1 Generalized coordinates for each joint

ni(r)rigtar Joint type Connecting bodies Generalized coordinates

Jo Free joint ground-chassis(b0) q0.91.92,93,94.945

J1 Translational chassis{b0)-rack(bl) g6

12 Revolute chassis(b0)-lower control arm(b2) q7

I3 Ball chassis(b0)-strut(b4) q8,0%9.q10

14 Translational strut(b4)-knuckle(b3} ql!

I5 Revolute chassis(b0)-lower control arm(b5) ql2

J6 Ball chassis(b0)-strut(b7) gl3,qld,qls

17 Translational strut(b7)-knuckle(b6) qlé

I8 Revolute chassis(b0)-camber control arm{b8) qlt7

19 Ball camber control arm(b8)-knuckle(b9) q}8,919,q20

110 Revolute chassis(b0}-camber control arm(b10) q21

n1 Ball camber control arm(b10)-knuckle(b!1) q22,923,q24

122 Revolute knuckle(b3)-tire(T1) q2s

123 Revolute knuckle(h6)-tire(T2) q26

124 Revolute knuckle(b9)-tire(T3) q26

125 Revolute knuckle(b11)-tire(T4) q27

none none Engine q28
strut, and a tie-rod. The 4-link type consists of a knuckle, a Aeceleration pedal
strus, two toe control arms, a camber control arm, and a trail LINKAGE
link. The rack and pinion mechanism that is connected to e DYNAMICS
the wheel knuckle by a tie-rod transters an driver input to ._ -
the wheel assembly. The UA tire model is employed for the lﬂﬁm 4 (e | e
tire force computation [13). The stabilization bar is mod- TORQUE CONVERTER

eled as two rotational springs that act atong the two revo-
lute joints between the chassis and the lower control arms.
The drive train model presented in Ref. [14] and summa-
rized in Fig. 3 is used in this research.

In order to systematically derive the equations of motion
and constraints, a mechanical syster has been represented
by a graph. A body and joint are represented by a node and
edge, respectively. Fig. 4 shows the graph theoretic repre-
sentation of the prototype vehicle system. The closed loops
in the graph are opened to form the spanning tree in Fig. 5
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Fig. 3 A drive train model

by cutting ball and distance joints [7]. The resulting gener-
alized coordinates for each joint in the spanning tree are
shown in Table 1.
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Fig. 4 Graph representation for the prototype vehicle

3. Kinematics and generalization of
recursive formulas

Consider a pair of contignous bodies shown in Fig. 6
from the spanning tree in Fig. 5. Body i-1 is assumed to be
an inboard body of body i in the spanning tree. The position
of point O, is obtained as

T =T + 55
+ d(i—I)i — Si-1 M

The angular velocity in the body reference frame is

obtained as
(0,’ = ATci—ni (IJH'
+ AT(%*i)iH:i—l)iq(i—l)i (2)

Fig. 5 Spanning tree for the prototype vehicle

Fig. 6 Kinematic relationship between two adjacent
rigid bodies

where H’ is determined by the axis of rotation. A
denotes an orientation matrix for a body reference frame
and A =A ., A,. Differentiation of Eq.1 yiclds

o -,
A=A, T,
- ’
- A(H) s(i—])iw(i-l)

’

= Ay Ay @,
~r !
+A S @

iifi—

+ A, ik, e 3

where symbols with tildes denote skew symmetric matri-
ces associated with their vector elements, ¢ = Ar’,
and 9, denotes relative coordinate  vector.
Substituting @ of Eq.2 and multiplying both sides of

Eq.3 by AT yicld

. T .
E=A il
AT‘ Wl ar
= A iy Hd
~r T z
= A8 A - )@,

T
+ A a0 (g g

+ A(i—l)isli(i-l)AT(i'l)iH’{i—iJi)q(i-l)i (4)
Y, = B(H)ilY(i-l)
+ By (3)
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for which A; = A& are used. Combining Eqs.2 and
4 yields the following recussive velocity equation for a pair
of contiguous bodies.

where
o, TT
Yi=lal (6.2)
AL, 0
B(l il e T
0 AEH):
I 50, +a(,i-1]i - A(i—])igi’(i—l)AT“"J')
0 I (6.b)
B A(Ti—lli 0
-1 0 A(Ti_“i
(i), A(ifl)ig:(i—l)AT““”iH(’i—l)i
H, (6.c)

It is important to note that matrices Bgmand B
are only functions of the relative coordinates of the joint
between bodies (i-1)i .

Similarly, the recursive virtual displacement relationship
is obtained as follows.

‘521 = B(i.nnaz'(i.n + B(i—l)izaq(ivl)i N

If the recursive formula in Eq.5 is respectively applied to
all joints of the spanning tree in Fig. 5, the following rela-
tionship between the Cartesian and relative generalized
velocities can be obtained:

Y =Bgq (&

The Bgiy' s of the recursive formulas are function of
only the relative generalized coordinates. A virtual joint of
the free joint which has six degrees of freedom has been
defined between the ground and the chassis for uniform
treatment of all bodies. The generalized velocities for the
free joint are defined as  Yi.. in Eq.6.a to make the B
malrix in Eq.8 free from the generalized coordinates for the
free joint. Since the generalized velocitics and time detiva-
tive of the generalized coordinates are different for the free
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joint, the latter is computed from the former for the numeri-
cal integration. The fact that the B matrix is free from the
generalized coordinates for the free joint plays a key role in
reducing the update frequency of the system Jacobian
matrix for Newton chord iterations that will be presented in
later sections.

The Cartesian velocity YeR™ with a given
q € R" can be evaluated either by using Eq.8 obtained
from symbolic substitutions or by using Eq.5 with recur-
sive numeric substitution of Y;s. The nc and nr denote the
numbers of the Cartesian and relative generalized coordi-
nates, respectively, Since both formulas give an identical
result and recursive numeric substitution is proven to be
more efficient [11], matrix multiplication Bq with a
given q will be actually evaluated by using Eq.5.
Since g in Eq.11 is an arbitrary vector in R™, Equa-
tions.5 and 8, which are computationally equivalent, are
actually valid for any vector X € R™ such that

X=Bx (9.a)

and

Xi = B(i—l]i]x(i—l) + B(i—l)ilx(i-l)i (9b)

where x € R™ is the resulting vector of multiplication
of B and X. As a result, transformation of xeR™
into Bx € R™ is actually calculated by recursively
applying Eq.9.b to achieve computational efficiency in this
research,

[nversely, it is often necessary to transform a vector G
R™. Such a
transformation can be found in the generalized force com-

in R™ into a new vector g=B"G in

putation in the joint space with a known force in the Carte-

sian space. The virtual work done by a Cartesian

force Q € R™ is obtained as follows.

oW =382"Q (10}

where &Z must be kinematically admissible for all

joints in a system. Substitution of §Z = Bdq into Eq.10
vields
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oW =58"B'Q=69"Q’ an
wher Q" =BTQ. Equation 11 can be written in a
summation form as

nbd-1
W = Ef) &]iTiH) ;l(i+l) {12)
where nbd denotes the number of bodies in a system. On
the other hand, the symbolic substitution of the recursive
virtual displacement relationship Eq.7 into Eq.10 along all
chains (starting from the terminal bodies toward inboard
bodies) yields |

n-1
oW = ,_zt)aq.il;i+1){B;l(-i+l}2(Qi+l +8.,,)) (43

where

S, =0

Si+l = B(i+l)(i+2)lT(Qi+2 + Si+2) (14)

By equating Eqs.12 and 13, the following recursive for-
mula for Q" is obtained.

Qliry = Bl (Quy +8,0), i=nbd-1K 0 (15)

where S;.; is defined in Eq.14. Since Q is an arbi-
frary vector in R™, Equations 14 and 15 are valid for
any vector G in R™. As a result, the matrix multiplica-
tionof BTG is actually evaluated to achieve computation-
al efficiency in this research by

Eiis) = Bﬁul)z (G, +5,))
5 =0 i=nbd-1,K .0

S = B;l(.i+l)l(Gi+1 +8;.)) (16)
where £ is the result of BTG .

4. Implicit integration of the equations of
motion and constraints

The variational form of the equations of motion for con-
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strained mechanical systems is

5q" BT (MY + D, -Q)} =0 an

where 89 must be kinematically admissible for all tree
structure joints, A € R™ is the Lagrange multiplier vector
for cut joints and is the number of cut constraints.
PecR™ and 9 represent the position-level constraint
vector and the constraint Jacobian matrix, respectively. The
mass matrix and the force vector Q are defined as follow;

M = diag(M,, M,,K , M_,,)
Q= (Q;r’ Q;‘yK ’ Q:bd

(18.a)
(18.b)

where nbd denotes the number of bodies. Since 3q is
arbitrary, the following equations of motion are obtained. ;
F=B"MY+®L1-Q)=0 (19)
The equations of motion can be implicitly rewritten by
introducing v=4q as
F(q, v, v. 1)=0 (20)
Successive differentiations of the position level con-
straint yield

cb(q, v)=¢;]v—v=0 (21)

Pq, v, =By -y=10 (22)

Equation 20 and all levels of constraints comprise the
overdetermined differential algebraic systern (ODAS). An
algorithm for the backward differentiation formula (BDF)
to solve the ODAS is given in [21] as follows. ;

F(p) [ Fiq, v, v, 1) |
i By-y
) Bv-v
Hpy=| & =  H0 =0 (23)
Ug(—R) | |0l (v-v=2)
by, b,
T, B r, h
_Uo(bo Rz)A Uu(—i;o—v—q—gz)



D.S. Bae

13 k
where { ={1/b,)Zbv,and & =(1/b,) 2 bq,,,, in
=1 i=l

which k is the order of integration, b;s are the BDF coef-
ficients and p=[q", v", ¥', A71". The columns of
U, e R0 eonstitute bases for the parameter space of
the position-level constraints and is obtained by LU-
decomposition of the constraint Jacobian so that the follow-
ing matrix is nonsingular:

]

The number of equations and the number of unknowns in
Eq.23 are the same, and so Eq.23 can be soived for P.
Newton Raphson method can be applied 1o obtain the

(24)

solution P.
H Ap=-H 25
pi+] — pl +Ap (26)
where

—Hq F, F, FA'

D 0 0 0
H_ = Cb“ g Y 0 27
Sl & @ of @

Ug ,BDUg 0 0

| 0 Ug ﬁoUg 0 |

Recursive formulas for H, and H in Eq.25 will be
derived in Section 4 to evaluate them efficiently. Equation
23 is linear for the acceleration and the Lagrange multi-
pliers but  are nonlinear for the generalized coordinates
and velocities. However, all variables are treated as non-
linear in solving them. Further investigations will be car-
ried out in a near future to take advantage of the linearity
for the acceleration and the Lagrange multipliers.

5. Numerical algorithm

This section explains how the equations of motion and
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constraints presented in section 4 are implemented to
reduce the computation time. The implementation algo-
rithm is shown in Fig. 7. Note that Newton chord method
in the position, velocity, and acceleration analyses uses the
coefficient matrices that are evaluated and LU-decomposed
at the initial time.

Since the proposed algorithm requires to compute only
the residual vectors of the equations of motion and con-
straints, all computations are carried out in a vector oriented
fashion by using the generalized recursive formulas pre-
sented in section 3. Consequently, computationally exten-
sive matrix operation is unnecessary in the proposed algo-
rithm. In order to further reduce the computation time,
computation of the generalized forces and the velocity cou-
pling terms are carried out only once right before the accel-
eration analysis and is excluded in the iteration loop for the
acceleration analysis.

Read initial conditions

v

Jacobian evaluation
& LU decomposition

La
kol

Solving Equation 25

Predict P

[ 3

T=T+h

Converge

Fig. 7 Implementation algorithm

6. Numerical results

In the previous section, the equations of motion and kine-
matic constraints are formulated such that the coefficient
matrices for the solution equations do not need to be fre-
quently updated. Since a vehicle may be operated under
various environments, it is very difficult to analytically
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determine the update frequency of the coefficient matrices
for a general vehicle system. As a consequence, this
research performs several numerical experiments that cover
some of the various environments as much as possible.
Combination of the ground condition, driver inputs of steer-
ing, and acceleration or deceleration can cover some of the
environments. Three types of simulation scenarios are con-
sidered. The first one is a J-tum simulation. The steering
and acceleration pedal position inputs shown in Figs, 8 and
9 are given to the rack and pinion mechanism and the drive
train model, respectively. The chassis is expected to experi-
ence some yaw, roll, and lateral acceleration. The second
one is a lane change maneuver. The steering and pedal
position inputs are shown in Figs. 9 and 10, respectively.
The third one is a bump pass maneuver in which the sus-
pension subsystems are expected to experience a rapid ver-
tical motion. The pedal position shown in Fig. 9 is also

steening input - rack pasition

0005

o
®
T

0063

g

o |

teering Input-rack position{m)

0aaa

1 L 1 i
D 3 10 15 il
time(sec)

Figure 8. Steering input for the J-turn simulation

Pedal Position

pedal position{degree)

: L .
o 5 10 15 20
time(sec)

Fig. ¢ Pedal position
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used for this simulation,

In order to compare the results obtained from the pro-
posed method, the DAE selution algorithm in Ref, [4] with
a very small stepsize is exccuted to obtain the exact solu-
tions. Fig. 12 shows the lateral accelerations of the chassis

staeting input - rack position

staering input . rack position (m)
, , -
]
8

-0 008
1]

time(sec)

Fig. 10 Steering input for the lane change maneuver

Bump shape
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1 1 1 1L i
T390 7395 700 TAQ5 410 A5

distance(m)

Fig. 11 Bump shape

Lateral acceleration
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Fig. 12 Lateral acceleration for the lane change maneuver
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Yaw rate
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Fig. 13 Yaw rate for the J-turn simulation

verllc sl sccslerationimisecl)

Vertical acceleration
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15 80 85 84
time(sec)

Fig. 14 Vertica! acceleration for the bump pass simulation

defta

delta plot

bump pass
—a— J-turn
—— lane change

timaisec)

Fig. 15 Deltas for each simulation

Table 2 Computation time

methods

conventional proposed

computation time

per | step

12 msec 0.8 msec
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for the lane change maneuver both from the proposed
method and the original method. The yaw rates of the chas-
sis for the J-tum simulation obtained from both methods are
shown in Fig. 13. The vertical accelerations of the chassis
for the bump pass simulation obtained from both methods
are shown in Fig. 14. Note that both solutions closely
match, which validates the results obtained from the pro-
posed method. Computation times per each step for the
conventional and proposed methods on a 400 MHz PC
compatible are shown in Table 2. Note that a significant
improvement in the computational efficiency has been
achieved. Furthermore, since the 1 msec stepsize is used
for the numerical integration, it is possible to run the proto-
type multibody vehicle model on a PC compatible in real-
time by using the proposed algorithm.

The 4sin Eq. 4.10 for the position analysis are drawn
in Fig. 15 for three simulations. Note that they remain to
be very small throughout the simulations. The maximum
number of Newton chord iterations was 4, which is possi-
ble due to the small 4.

7. Conclusions

This research proposes an efficient implementation algo-
rithm for implicit numerical integration methods so that
low cost computers can be used for the realtime simulation
of multibody vehicle dynamics models. The relative gener-
alized coordinates and the generalized recursive formulas
are used to reduce the size of the goveming equations and
computation time, respectively. Newton chord method is
employed to solve the kinematic constraints and the linear
gystemn of equations of motion. The equations of motion
and constraints are formulated on the body reference frame
to make the mass matrix and the constraint Jacobian inde-
pendent of the chassis motion. This made possible to com-
pute the coefficient matrices of the solution equatiens only
once for all Newton chord iterations. Convergence rate and
order of the proposed Newton chord method are shown to
be very close to these of the exact Newton method for the
prototype vehicle model. Numerical simulations showed
that the proposed method yields accurate solutions for van-
ous driving conditions in realtime on a 400 MHz PC com-
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patible. The imiprovement of the proposed method over the
conventional method for the prototype vehicle model was
about 15 times,
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Nomenclature
A, :orcntation matrix of ith body
¥ : position vector of ith body
I : velocity vector of ith body
t';  :velocity vector of ith body tn the body refer-
ence frame

$i.iy  + local position vector of ith body
d;; - distance vector from {i-1) body to ith body
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@; - angular velocity

. . body reference frame angular velocity
: relative velocity

: velocity transformation matrix

: Cartesian velocities

: virtual work

: generalized force of ith body

: joint reaction force of ith body

: MAss matrix

cyg<ws

7]

: Cartesian accelerations

- the Jacobian of position constraint w.r.t. z
: Lagrange multipliers

: generalized coordinates

: generalized velocities

: generalized accelerations

: position constraint

: velocity constraint

: acceleration constraint

: residual

:the Jacobtanof H wrt P

=T BT T T R L - T = R A 4

-



