해양미생물 Erythrobacter 속으로부터 Carotenoid의 생산 및 그 생리활성

Production of Carotenoid from Halophilic Erythrobacter sp. and characterization of Physiological Properties

  • 김종덕 (여수대학교 생명공·화학공학부) ;
  • 강동수 (식품공학·영양학부) ;
  • 김민용 (냉동공학과) ;
  • 노승배 (양산대학 식품가공과) ;
  • 최명락 (여수대학교 생명공·화학공학부) ;
  • 송상호 (여수대학교 생명공·화학공학부) ;
  • 백승한 (경상대학교 식품영양학과) ;
  • 서효진 (여수대학교 생명공·화학공학부) ;
  • 김대현 (여수대학교 생명공·화학공학부)
  • 발행 : 2001.02.01

초록

A marine bacterium producing carotenoid was isolated from the Yosu coastal area of South Korea, which was recorded as MCK-1. It was identified as Erythrobacter sp. Optimium conditions of marine carotenoid fermentation from Erythrobacter sp. were pH 6.0, a temperature of $25^{\circ}C$, 16 mM mannitol as a carbon source, 0.5% tryptone as a nitrogen source, 0.1 mM $Fe^{+2}$ ion as a mineral source and 1$\mu$M of cyanocobalamine as a growth factor in a jar-fermentor. Erythrobacter sp. was produced 351.27 mg/100mL of the marine carotenoid in these optimum conditions. This marine carotenoid was composed of 4 different conpounds, like as notoxanthin (61.4%), can thaxanthin (24.6%), fucoxanthin (8.2%), and zeaxanthin (5.8%). Physiological properties including antibacterial activity, cytotoxic effect, antioxidative effect and free radical scavenging activity were characterized with crude carotenoid. Carotenoid exhibited no antibacterial activity against E. coli and lactobacillus bulgaricus, but showed cytotoxic effect against cancer cells such as HepG2 (Hepatocellular carcinoma, human, ATCC HB-8065) and HeLa (Cervical carcinoma, human, ATCC CCL-2) cells. The impediment ratios for HepG2 and HeLa cell were 37.14% and 33.78%, respectively. This carotenoid expressed a strong antioxidative effect (77%) against CCL-13 5 $\mu\textrm{g}$/mL and 50 $\mu\textrm{g}$/mL crude carotenoid, respectively.

키워드

참고문헌

  1. Crit. Rev. Food Sci. Nutr. v.31 Carotenids and retinoids in human nutrition Tee E. S.
  2. J. Agric. Food Chem. v.39 separation and identification of cis/trans,carotenoid isomers Mohammed H. S.;Barrie T.
  3. Food and Preservation Oota S. Y.
  4. Eur. J. Nutr. v.38 Dietary fiber reduces the antioxidative effect of a carotenoid and alphatocopherol mixture on LDL oxidation ex vivo in humans Hoffmann J.;Linseisen J.;Riedl J.;Wolfram G.
  5. Redox. Rep. v.4 Antioxidant activity of palm oil peroxyl radical-mediated peroxidation of phosphatifyl choline liposomes Farombi E. O.;Britton G.
  6. Pure Appl. Chem. v.51 Carotenoid protection against oxidation Krinsky N. I.
  7. Food Tech. v.9 Biological activity and prospects of natural carotenoid Hong S. P.
  8. Carotenoids as colorants and vutamin A precursors Bauerfeind J. C.
  9. Trends in Food Sci. Tech. v.8 Food carotenids and cancer prevention-An overview of current research Pierre A.
  10. Infofish International v.5 Products from microalgae Michael A. B.
  11. Pure.Appl. Chem. v.57 Mechanism of photoregulation of carotenoid biosynthethic in plants Rau W.
  12. J. Ferm. Bioen. v.74 Effects of light intensity,light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis Makio K.
  13. J. Ferm. Bioen. v.74 Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions Makio K.
  14. Biotechnol. Tech. v.4 Extraction and quantitation of astaxanthin from Phaffia rhodozyma Sedmak J. J.
  15. J. Farm. Bioen v.75 Improvement od astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions of Tony J. F.
  16. J. Appl. Bacteriol. v.70 Microbial sources of carotenoid pigments used in foods and feeds Nelis H. J.;DE Leenheer A. P.
  17. Cri. Rev. Biotech. v.11 Astaxanthin from microbial sources Johnson E. A.
  18. J. Kor. Soc. Food Sci. Nutr. v.27 Physiological function and production techniques of carotenoids Hong S. P.;KIm M. H.
  19. Encyclipedia of food science and technology Macrae R.;Robbison R. K.;Sader M. J.
  20. J. Korean Soc. Food Sci. Nutr. v.26 Growth inhibitory effect and changes in membrane phospolipid fatty acids composition on MG-63 and AZ-521 Human cancer cells by linoleic acid Lim S. Y.;Rhee S. H.;Yi S. Y.;Park K. Y.
  21. Int. J. Syst. Bacteriol. v.47 Restriction fregment length polymorphisms analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains Yoon J. H.;Lee S. T.;Kim S. B.;Kim W. Y.
  22. Nucleic Acids Res. v.22 CLUSTALW;Improving the sensitivity of progressive multiple sequence weighting position specific gap penalties and weight matrix choice Thompson J. D.;Higgins D. G.;Gibson T. J.
  23. PHYLIP;Phylogenetic Inference Package(3.5 Version) Felsenstein J.
  24. Comp. Biochem & Physiol. v.41B Carotenoid from mudibranshus Mcbeth J. W.
  25. Nippon Suisan Gakkaishi v.41 Biochemical comparative studies of fisheries carotenoidⅤ.Comparison of a Mullet in freshwater and seewater Matsuno T.;Eita S.;Chiyou K.
  26. Nippon Suisan Gakkaishi v.47 Seperation of new carotenoid 3,4,3'-trihydroxy-7',8'-didehydro-β-carotene in Mytilus or-assitesta Matsuno T.;Makou K.
  27. J. Virol. v.72 Retinoid-induced repression of human immunodeficiency virus type 1 core promoter activity inhibits virus replication Maciaszek J. W.;Coniglio S. J.;Talmage D. A.;Viglianti G. A.
  28. Protocol of Lipid-Peroxide and Free Radical Kojuran S.Shimajaki H. S.
  29. Protocol of Functional Control Substance for Body from Foods Kawakishi S. R.
  30. Comp. Biochem & Physiol. v.81 Carotenids of sea squirt- Ⅱ.Comparative biochemical studies of carotenoids in in sea squirt Ookubo. M.;Matsuno T.
  31. Phytochemistry v.15 Carotenids of ANACYSYIS NIDULANS, structure of caloxanthin and nostoxanthin Bucheker R.;Synnove L. J.;Gunner B.;Harold W. S.
  32. FEBS Lett. v.427 Carotenoid mixtures protect multilamellar liposomes aginst oxidative damage-Synergistic effects of lycopene and lutein Stahl W.;Junghans A;Boer B.;Driomina E. S.;Brivina K.;Sies H