Binding Behavior of Cationic Surfactant to Chitosan-based Polyelectrolyte

키토산 고분자 전해질에 대한 양이온 계면활성제의 결합거동

  • Published : 2001.04.01

Abstract

Binding behavior of two cationic surfactants, dodecyltrimethylammonium bormide (DTAB) and tetradecyltrimethylammonium bromide(TTAB), to the chitosan-based polyelectrolyte was studied. Chitosan films used in this study were crosslinked with epichlorohydrin (ECH). Binding isotherms were determined by potentiometric technique using a surfactant ion selective solid-state electrode and the results are represented by using the sequence generating function(SGF) method. The results of binding isotherm indicated that there is comparatively low cooperativity. The effect of salts(NaCl, $MgCl_{2}$) n the binding isotherms was also studied. The addition of salts in the polyelectrolyte/surfactant system resulted in a shift of the binding to higher free surfactant concentration because the polymer charge was screened by the counterion. The swelling ratio of the crosslinked chitosan was found to increase with increasing degree of deacetylation(DD) and with decreasing crosslink density of chitosan. A conformational phase transition of the crosslinked chitosan gels, as the binding with DTAB and TTAB proceeded, has been investigated.

Keywords

References

  1. Surfactant Science Series, Polymer/Surfactant Interactions v.11 Anionic Surfactants in Physical Chemistry of Surfactant Action I.D.Robb;E.H.Lucassen-Reynders(ed.)
  2. J. Phys. Chem. v.65 A.S.Michaels;R.G.Miekka
  3. Surfactant Science Series v.37 Cationic Surfactants in Physical Chemistry K.Hayakawa;J.C.T.Kwak;D.N.Rubingh(ed.);P.M.Holland(ed.)
  4. Proceedings of the 5th International Conference on Chitin and Chitosan, Princeton, New Jersey, 1991 Advances in Chitin and Chitosan C.J.Brine;P.A.Sanford(ed.);J.P.Zikakis(ed.)
  5. Polymer v.22 T.Uragami;Y.Ohsumi;M.Sugihara
  6. Macromolecules v.26 Y.C.Wei;S.M.Hudson
  7. J. Phys. Chem. v.86 K.Hayakawa;J.C.T.Kwak
  8. J. Phys. Chem. v.88 A.Malovikova;K.Hayakawa;J.C.T.Kwak
  9. J. Macromol. Sci., Rev. Macromol. Chem. Phys. v.C35 no.1 Y.C.Wei;S.M.Hudson
  10. J. Polym. Sci., Part A, Polym. Chem. v.35 H.S.Bae;S.M.Hudson
  11. Macromolecules v.16 K.Hayakawa;J.P.Santerre;J.C.T.Kwak
  12. J. Korean Fiber Soc. v.36 H.S.Bae
  13. Phys. Rev. Lett v.45 no.20 T.Tanaka;D.Fillmore;S.Sun;I.Nishio;G.Swislow;A.Shah
  14. J. Appl. Polym. Sci. v.73 J.W.Lee;S.Y.Kim;S.S.Kim;Y.M.Lee;K.H.Lee;S.J.Kim
  15. J. Appl. Polym. Sci. v.28 S.Mima;M.Miya;R.Iwamoto;S.Yoshikawa
  16. Makromol. Chem. v.186 B.D.Gummow;G.A.F.Roberts
  17. Int. J. Biol. Macromol. v.13 W.Wang;S.Bo;S.Li;W.Qin
  18. U. S. Patent, 5,015,293 J.Mayer;D.Kaplan
  19. Polymer Communications v.31 Y.Yisong;L.Wenjun;Y.Tongyin
  20. Surfactant Science Series v.4 Adsorption of Cationic Surfactants on Miscellaneous Solid Substrates M.E.Ginn;E.Jungermann(ed.)
  21. J. Chem. Phys. v.31 B.H.Zimm;J.K.Bragg
  22. Biopolymers v.15 I.Sadake;J.T.Yang
  23. Makromol., Chem. v.178 K.Kurita;T.Sannan;Y.Iwakura
  24. J. Chem. Phys. v.40 S.Lifson
  25. Macromolecules v.25 A.R.Khokhlov;E.Yu.Kramarenko;E.E.Makhaeva;S.G.Starodubtzev
  26. J. Chem. Phys. v.51 G.S.Manning
  27. The Polysaccharides v.1 G.O.Aspinall
  28. J. Appl. Polym. Sci. v.45 J.H.Kim;J.Y.Kim;Y.M.Lee;K.Y.Kim
  29. Phys. Rev. Lett. v.40 no.12 T.Tanaka
  30. J. Chem. Phys. v.9 P.J.Flory