Studies on Cure Behavior, Thermal Stability, and Rheological properties of Tetrafunctional Epoxy/Biodegradable MAP Blends

4관능성 에폭시/생분해성 MAP 블렌드의 열적 특성 경화거동 및 유변학적 특성에 관한 연구

  • Published : 2001.04.01

Abstract

The effect of biodegradable modified aliphatic polyester (MAP) on neat tetrafunctional epoxy (4EP) was investigated in terms of cure kinetics, thermal stabilities, and rheological properties. The 4,4'-diamino diphenyl methane (DDM) was used as a curing agent for the blend system and the content of 4EP/MAP was varied with the in the 100:0, 90:10, 80:20, 70:30, and 60:40 wt%. As a result, the cure activiation energies ($E_{a}$) for the cure kinetics obtained by dynamic DSC method using Kissinger equation, were increased in 10 and 20 wt% of MAP compared with neat 4EP, due to the increasing intermolecular interaction between 4EP and MAP. And the decomposition activation energies ($E_{t}$) for thermal stability derived fromthe integral method of Horowitz-Metzger equation, were increased within the 10∼30 wt% composition range of MAP, resulting from increased crosslinking density in the blend system. The cross-linking activation energies ($E_{c}$) for rheological properties determined from the Arrhenius equation based on gel time and curing temperature, exhibited similar behavior to those of integral method which could be explained by the miscibility between 4EP and MAP.

Keywords

References

  1. Polymer v.41 P.Musto;L.Mascia;G.Ragosta;G.Scarinzi;P.Villano
  2. Handbook of Epoxy Resins H.Lee;K.Neville
  3. Chemistry and Technology of Epoxy Resins B.Ellis(ed.)
  4. J. Appl. Polym. Sci. v.42 S.M.Moschior;C.C.Riccardi;R.J.J.Williams;D.Verchere;H.Santerean;J.P.Pascault
  5. Polymer v.30 K.Yamanaka;Y.Takagi;T.Inoue
  6. J. Appl. Polym. Sci. v.42 D.Verchere;J.P.Pascault;H.Satereau;S.M.Moschiar;C.C.Riccardi;J.J.Williams
  7. J. Korean Fiber Soc. v.37 S.J.Park;H.C.Kim;P.K.Pak
  8. J. Appl. Polym. Sci. v.28 C.V.Benedict;W.J.Cook;P.Jarrett;J.A.Cameron;S.J.Juang;J.P.Bell
  9. Acc. Chem. Res. v.26 G.Swift
  10. Polym. Degrad. Stab. v.35 Y.Kumagai;Y.Doi
  11. Biodegradable Plastics and Polymers M.Gada;R.A.Gross;S.P.McCarthy;Y.Doi(ed.);K.Fukuda(ed.)
  12. Macromolecules v.25 K.E.Gonsalves;X.Chen;J.A.Cameron
  13. Epoxy Resin C.A.May
  14. The Epoxy Resin Formulators Training Manual R.L.Wheeler
  15. Macromol. Symp. v.93 E.Espuche;J.Galy;J.F.Gerard;J.P.Pascault;H.Sautereau
  16. J. Mater. Sci. Lett. v.18 S.J.Park;M.S.Cho
  17. J. Mater. Sci. v.35 S.J.Park;M.H.Kim
  18. J. Colloid. Interface Sci. v.215 S.K.Ryu;B.J.Park;S.J.Park
  19. Thermal Characterization of Polymeric Materials R.B.Prime;E.A.Turi(ed.)
  20. J. Res. Nat. Bureau, Stand. v.57 H.E.Kissinger
  21. Polymer v.38 M.I.G. de Miranda;C.Tomedi;D.I.D.Bica;D.Samios
  22. J. Appl. Polym. Eng. v.61 S.Montserrat;G.Andreu;P.Cortes;Y.Calventus;P.Colomer;J.M.Hutchinson;J.Malek
  23. Polym. Eng. Sci. v.27 H.H.Winter
  24. Anal. Chem. v.60 D.N.Waters;L.P.John
  25. Polymer v.40 J.M.Lazea;C.A.Julian;E.Larrauri;M.Rodriguez;L.M.Leon
  26. J. Polym. Sci. Polym Phys. v.39 S.J.Park;H.C.Kim
  27. Anal. Chem. v.33 C.D.Doyle
  28. J. Polym. Sci. v.3 L.H.Lee
  29. Anal. Chem. v.35 H.H.Horowitz;G.Metzger
  30. J. Polym. Sci. Polym. Phys. v.33 J.O.Simpson;S.A.Bidstrup
  31. Introduction to Polymer Viscoelasticity(2nd ed.) J.J.Aklonis;W.J.Macknight
  32. Adv. Polym. Sci. v.80 S.D.Senturia;N.F.Sheppard
  33. J. Polym. Sci. Polym. Chem. v.38 S.J.Park;M.K.Seo;J.R.Lee
  34. J. Korean Fiber Soc. v.37 S.J.Park;J.S.Jin;P.K.Pak
  35. J. Appl. Polym. Sci. v.47 P.A.Oyanguren;R.J.William
  36. J. Polym. Sci. v.20 T.Takahama;P.H.Geil