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A Pilot Project to Measure Propagated Error in Buffering Process
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ABSTRACT

Buffering is one of the popular spatial analytical functions widely used in many proximity
analyses. The buffering inevitably entails a new polygon of specified edge that is simulated by
rolling a ball around the buffering object. While buffering, the error on the buffering object
propagates to the new buffered object. In this paper the error propagation behavior during the
buffering operation is analyzed based on a pilot project for two different data models: polyline
and spline curve. Thus, the error on the buffered objects are classified, mathematically defined,
and measured. For measurements, the pilot project is designed and performed using a test site
that is a lake boundary at Wisconsin, USA.

1. Introduction and spline segments construct polyline and spline
curve respectively. The propagation mechanism is
classified into three cases based on the error type
the buffering  objects, described

mathematically respectively. Then, a pilot project is

Buffering is one of the popular spatial analytical

functions widely used in many proximity analyses. On and

During buffening, the error on a buffering object
usually propagates through the operation in additive
or multiplicative fashion. The following section
addresses such propagation mechanisms for the

performed to measure the propagated error.

2. Error Propagation in Buffering
situation where two different spatial primitives are

used. These two spatial primitives - line segments Buffering is a process to delineate a new
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geometric object that is decided by a specified
distance scheme from an object. Buffering can be
done on each spatial object such as point, line, and
polygon delineating a new polygon. The buffering
inevitably entails the new polygon of higher smooth
edge that is simulated by rolling a ball around the
buffering object (Lawrini and Thompson, 1992).
While buffering, the error on the buffering object
propagates to the new buffered object

2.1 Delineation of Buffered Object

The buffering process consists of two steps.
The first step is to stretch out towards the outside
direction from the buffering object within a
specified distance. The direction is orthogonal to the
direction of the spatial object comprising the
buffering object. The next step is simply drawing a
line that touches the outer limit of this stretch. For
the line segment case, coordinates of a number of
points on the outer limit are required to delineate
the buffered object. For the spline segment case,
the curve equations must be derived using these
points. In most cases, the buffered object requires
more spline curve eguations than the buffering
ohject.

2.2 Conceptual Model of Error Propagation
Position Error Propagation on a Buffered Line
Object

The propagated position error on the buffered
line object depends on the position error on the
buffering line object. Provided the position error of
the buffering object of a line segment 1s expressed
by equation (1),

n _
[ -—em+eg

o
where, e indicates position error on the line
segment of the buffering object.
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indicates source map error

. indicates generalization error.

Now, the buffered object consists of multiple line
segments including upper and lower line segments
and side line segments. Then, the position error on
these line segments of the buffered ohject in this
case 1s,

e’ =e,+e,

)

indicates position error on the line
segment of the buffered object.

eln

where, €

FEquation (2) is a reasonable estimation when a
series of line segments draw a fairly straight line.
However, if the line segments draw curves, the
error on the buffered object may not strictly follow
such an equation. Rather, the emror would be
smaller due to the reduced sinuosity of buffered line
segments.

Likewise, if the buffering object is in a spline
segment, the position emror of the corresponding
spline segments of the buffered object is as follow.

e’ =CRye, +e, 3)

4

e’ =CRye, +e,

where, ¢" indicates position error on the spline
segment of the buffered object

CRup indicates inverse CR of MVD
CR;p indicates inverse CR of AD.

Here, the CR indicates closeness ratio. The CR
measures relative performance of spline segments
by dividing the MVD (or AD) of line segments by
MVD (or AD) of spline segments. The MVD
measures maximum vector displacement of a spline
segment (or a line segment) from the corresponding
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linear entity on which digital
proceeded.  Whereas the
displacement between a spline segment {or a line

abstraction is
AD  measures area
segment) and the corresponding linear entity on
which digital abstraction is proceeded. For detailed
description of these measures, refer to the research
results by McMaster (1983) and Kiyun (1999)

Again, these estimations are reasonable when the
spline segments draw fairly straight lines. If they
draw curves, the error would be larger along the
outer buffered side of the curve due to line
sinuosity characteristics. Equations (2), (3), and (4)
show the propagated position error on the buffered
object.  The amount of propagated error on the
buffered object basically depends on the amount of
error on the buffering object. Provided the error by
equation (2) is uniform within a line segment and
between line segments, such error results in a
certain width of error band that is unmform along
the polyline. The same is true for the equation (3)
and (4).

Area Error Propagation

Case a) Buffering is Done on Both Inside and
Outside of a Buffering Object
Compared to this, the area error propagation is
somewhat different.  When the buffering of distance
m is done on both the inside and outside of
buffering object of line segments with n points (for
closed polygon) or n+l points (for open polygon),
the area error of the buffered object is calculated as
follows, provided the same buffer distance is applied
on the linear entity of same span. Assume that the
area of buffered object from the line segments is

Jnand the area of the buffered object from the

linear entity of same span is ,ZZ. then,
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where, 7 is area of buffered object from the line

segments
Ay is area of buffered object from the
linear entity

I is length of ith line segment

LE s length of linear entity within ith

line segment span
is buffer distance.

In the above equations, the 7 term is excluded
if the line segments make a closed polygon. In

actual calculations, the values /b and 4 would
be smaller than the above estimations because there
is some overlapping of the buffered area due to the
line sinuosity of the buffering object. If the line
sinwosity of the buffering object increases, the
reduction would be larger and vice versa. This will
be explained later.

Then, the area error of the buffered object from
the line segments can be calculated by difference of
areas of these two buffered objects,

Efy = alf - At =2my @~ -
i=1

where _/» is area error of the buffered object

from the line segments.

Equation (7) explains the propagated area error
during buffering when the line segments are used.
From this equation, the propagated area error is
decided by the difference of two line lengths {linear
entity length and polyline length) multiplied by the
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double of the buffer distance.

Likewise, if the spline segment is used instead
of the line segment, by the same mechanism, the
propagated area error would be,

P _ & LE _A?P
EP” Zle(A A ®

where, s is area emor of buffered object from
the spline segments

sp is length of ith spline segment.

Case b) Buffering is Done on Outside o a
Buffering Object

let’ s think about the case when the
buffering is done on the outside of object of n line

Now,

segments with n points. Such line segments make a
closed polygon of area A jy that can be calculated

as,
n-1
In
Avg =| o pips + prpr| /2
where, Pi»P2-Pr indicate point vectors.

©

The corresponding area error of the buffering object
of line segments is,
A Y

i=l

(10)

where, E;; is the area error of the buffering object
4 s the area of the buffering object of
Iinear entity
Ay is the area of the buffering object of
line segments
e is the area error at ith line segment
which is positive if the line segment is
on outside of the linear entity and
negative if on inside of the linear entity.

FEOH B2 2000112 A8

Using the coefficient C that varies depending on
the geometric characteristic of the buffering object,
the area error of the buffered objecf is calculated as
follows,

By =C"Ey, an
where, Bri is the area error of the buffered object
of line segments
C" is the coefficient

in
Ey is the area eror of the buffering

object of line segments.

This  coefficienC”  reflects the  geometric
characteristics of the buffering object and it may
not be easy to formulate its behavior

mathematically. One behavior that can be expected

is that it would increase as the buffer distance

increases. Thus,
Cln <m

where m is the buffer distance.

(12)

This is the propagated area error when the line
segment is used. Likewise, the propagated area
error when the spline segment is used is,

where, Ey indicates area error of buffering object
of spline segments,

n n
spo_ spo_ -1
k= Zei ‘Z @Rmeg +e,
i=l i=1

where, C”is the coefficient for the spline curve

(14)

Ey; is the area error of the buffered object
of spline segments.

3. A Pilot Project to Measure Propagated
Error in the Proposed Model
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In this section, the propagated position and area
error during the buffering operation is measured on
a pilot project. The man purpose of such
measurement 1s to compare the values of measured
propagated error with the values from the proposed
mathematical model so that deepen the intuitive
understanding of the mathematical model.

3.1 Project Site Selections and Testing Data
Generation

For project sites, a hydrologic feature from a
USGS 75 quadrangle map was selected (USGS
quad map, Boulder Junction SW, Wisconsin,
N4BO00-WRI375/75). The selected  hydrologic
feature was a lake boundary of Trout Lake, Vilas
County, Wisconsin, USA (Figure 1).

Source from USGS quad map:
Boulder Junction SW, WI.
N46000-W8937.5/7.5

Figure 1. A Selected Testing Site for a Pilot Project
(Wisconsin, USA)

Since the selected lake boundary was in paper
format, it was scanned with 500dpi resolution and
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was head-up digitized very precisely in Arclnfo
(v.704) in the Unix environment. Thus, the paper
format was converted to the digital format. The
digital format Trout Lake was transformed to
register to the ground coordinate system.  The
ground coordinate system used was Universal
Transverse Mercator (UTM) in meters.

Upon completion of the scanning and converting
to digital format of the lake boundary, manual
digitization was done. While digitizing, two indices
were employed for digitization rule. These indices
were number of intersection (NIT) and number of
inflection (NIF). The NIT indicates how many times
each line segment crosses over the linear entity.
The NIF indicates how many times the linear entity
within each line segment span inflects (Figure 2).
For this project, digitization rule with some
exceptions due to minor fluctuations is applied
because this rule lets the spline curves simulate the

linear entity best.

Digitized Point

NIT=1,NIF=1 NIT=5,NIF=5

NIT=1,NIF=5 NIT=0,NIF=5

Case A) Case B)

Figure 2 Relationship Between NIT, NIF, and

Digitized Points

Note 1. The straight line indicates polyline

whereas wiggled line indicates linear

entity

2. The Case A) shows two linear
entities digitized by two points
with same NIT(l) and different
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NIF(1-upper, 5-lower); the Case
B) shows the same NIF(5) and
different NIT(5-upper, 0-lower).

A polyline with 130 line segments was produced.
Then, the New Bezier spline interpolation algorithm
(Kiyun, 1999) was used to generate a corresponding
spline curve. Thus, one spline curve was generated
that consisted of 130 spline segments. The
generated spline segments were primarly in the
cubic polynomial equation format. If the new
topological data model was implemented in terms of
coding the appropriate program, the curve equations
could be used directly for any of the following
spatial analysis operations. However, at this stage,
it is still in the conceptual realm. Instead of using
a program with curve equations, a series of
coordinate sets on the curve locus were generated
and imported into ArcInfo to generate a line
coverage. Then, the coverage from the spline curve
was used for the following analysis.

3.2 Exror Representation of a Polyline and a
Spline Curve

The error on the abstracted objects, such as
polyline or spline curves, can be represented by
putting a width of eror band (Chrisman, 1989)
along the object. Normally, the width of error band
is determined by checking the coordinates of
selected points on the object with corresponding
coordinates on the independent source of higher
accuracy (FGDC, 1994).

In this project, to determine the width of error
band, the entire error on the object is grouped into
two categories; source map error and generalization
error.  With the source map error, the error level
specified on the National Map Accuracy Standard
(NMAS) is used because the USGS quadrangle map
was compiled satisfying the standard. ~According to

EOBE2% 201 F 128
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the standard, no more than 10% of the errors on a
map exceed 1/50 inch for scale 1:20,000 or smaller.
Thus, in this project case, more than 902% of errors
on the quadrangle map are within 1/50 inch because
the map scale is 1:24000. On the ground, 1/50 inch
error on the map corresponds to 12.2 meter.

To determine the error during generalization, the
lake boundary and the polyline (or the spline curve)
were examined. Each line segment span was
fragmented into 50 smaller segments and the
deviation between these two lines at each smaller
segment span was calculated. Then, the mean of
the calculated 50 deviations for each line segment
was calculated. The same rule was applied when
the spline segments replaced the line segment. The
calculation results for the line segments showed
that the deviation distribution is likely normal
(Figure 3). Similar results are acquired from the
spline segments using the New Bezier algorithm.

No of Observations

-10 0 10 20 30 40 S0

-
4 o

Expected Normal Value
: %i% P

\ H
B i et
i N

; i
5 5 15 25 35 45 55
Mean Deviation of Line Segment (m)

Figure 3 Distribution of Mean Deviation of Line
Segment
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From this figure, the reason that deviation is
only on the positive side i1s because the sign is not
considered and all deviations were measured as
positive values. If we assign either positive or
negative sign to the measured deviation based on
whether it is on left side or right side along the
line segment, the negative side of the above
distribution would most likely be the same with the
positive side. Based on this assumption, the overall
mean deviation of the line segments and the spline
segments from the New Bezier algorithm were
calculated with their standard deviations.

Table 1 summarizes the results. In this table,
the wupper confidence limit calculated at
significance level 90%. The reason 0% was used
was to conform the emor level of the tested
polyline or spline curves to the error specification of
the NMAS.

Thus, at 90% probability, the lake boundary
within line segment span falls into these confidence
limits. Table 2
results of the polyline and the spline curve using
mean of raw deviation and CR.

is

shows performance comparison

Table 1 Mean Deviation Examination Results for
Deciding Error Band Width: Deviation of Polyline/
Spline Curve from the Lake Boundary

Upper Confidence
St Dev.(m) Limit (~01) (m)
Polyline 17.771050 29.322233
Spline Curve from
New Bezier 7.454549 12.300006

Note Confidence interval is calculated using
Z2=1.65 for =0.1 (significance level 90%).

Table 2 Performance Comparison Results of Polyline
and Spline Curves: Using Mean of Raw Deviation
and CR
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Mean of Raw
Deviation Mean of CR
MVD(m)| AD(m2) | MYD | 4D
Polyline 14.983 2566528
ﬁleijn\,zwc’g’evfier 9.9354 1392744 1893 | 2274

1. MVD indicates the maximum vector
of  the
polyline from the linear entity; 4D

Note

displacement digitized
indicates the area displacement of
the digitized polyline from the linear
entity. Values in the table are mean
values for 130 line segments. The
same is true for the New Bezier
spline curve.

. CR indicates closeness ratio that is
calculated by dividing MVD (or AD)
of polyline by MVD (or AD) of
New Bezier spline curve. Values in
the table are mean values for 130

line segments.

Using the above estimation of the source map
error and generalization error and the equation (1),
the width of the error band for the polyline can be
calculated as follows,

e =e,+¢, = 122+293 = 415 (m).
Likewise, for the spline curve of the New Bezier,
the width of the error band is,
e’ =122+123 = 245 (m).
I one compares this calculation with the theoretical
value from equation (3),

el =e, +CRype, = 122+1803-1293 = 277 (m).

where, CRun= 1893" (from Table 2).
computation approximates the empirical values.

Figure 4 shows these two error bands applied
on the polyline and the spline curve of the New
Bezier respectively.

This

BEMEERMEEREERE



Error Band from Spline Curve

Error Band from
Polyline

Trout Lake

Boundary

Figure 4. Comparison of Two Different Error Bands:
One of the Polyline (415m) and the Other of the
Spline Curve from New Bezier (24.5m)

3.3 Error Propagation in Buffering

As previously explained, there are two different
error propagation models in buffering; one is
position error propagation and the other is area
error propagation. In this section, first the position
error propagation is examined and then, the area
error propagation is examined.

Position Error Propagation During Buffering
The propagated position error during buffering
process is evaluated by checking the error band
width of buffered objects. To examine the error
band of a new buffered polyline and spline curve
(or buffered objects), buffering was done on the
buffering polyline and spline curve (or buffering
objects) and the error band width of the buffered
objects were calculated. Then, the calculated
error band width of the buffered objects was

BOBL FE 2% 2000 £12 A4

compared with the error band width of the
buffering objects. For buffering distance, the
values were arbitrarily decided as 100m, 200m, and
300m. The results show that as the buffer distance
increases, the standard deviation and corresponding
upper confidence limit of the buffered object slightly
reduces (Table 3). These results are the same for
both the polyline and spline curve from the New
Bezier.

Table 3 Deviation Examination Results for Deciding
Error Band Width : Deviation of Buffered Polyline/
Spline Curve from the Buffered Lake Boundary

Buffer St. Dev. |Upper Confidence
Distance (m) (m) Limit (=0.1} (m)
100 1765701 2013407
Polyline 20 17568 89152
0 1701082 2806786
100 643768 1062217
Spline
Curve of 20 5.96257 983824
New Bezier
300 563036 925009

Note Confidence interval is calculated using
Z=1.65 for =0.1 (significance level 90%).

The reason for these results comes from the line
simuosity changes during buffering. During
buffering, complex lines change to simpler lines,
reducing the line sinuosity of the buffered object.
In this context, the deviation between the buffered
polyline (or spline curve) and the buffered linear
entity is reduced. Consequently, the standard
deviation is reduced as well. Figure 5 and Figure 6
show the position eror propagation behaviors
during buffering of three buffer distances for
polyline and spline curve cases.
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__ Buffered Polyiine: Buf. Dist.= 200m
{7} Buffared Trout Lake Boundary:Buf. Dist =300m
Buftored Polyline:Butf. Dist.=300m

Figure 5 Position Error

Buffering: Polyline Case

Propagation During

6. DPosition Error

Figure
Buffering: Spline Curve Case

Propagation During

Area Error Propagation During Buffering
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The propagated error in area calculation during
buffering can be scaled down to two different
cases; 1) bulfering is done on both inside and
outside and 2) buffering is done only on outside.

Case 1) Buffering is done on both inside and

outside

When buffering is done on both inside and
outside of polyline (or spline curve), the area of
buffered polyline {or spline curve) may be different
from the area of buffered lake boundary. In this
case, the error in buffered area calculation can be
determined by subtracting the buffered area of the
polyline (or spline curve) from the buffered area of
the lake boundary.

For testing this, 100 m buffer distance was used
to buffer the polyline (or spline curve) and the lake
boundary. Then, the differences of their buffered
areas were calculated. The results show that the
difference of buffered polyline and buffered lake
boundary is bigger than the difference of buffered
spline curve and buffered lake houndary (Table 4).
To compare these values with theoretical values
from equation (7) and (8), area error was calculated
using these equations. The calculated results show
that buffered area of the lake boundary, polyline
and spline curve are 5498283.300-(a), 5,361,521.000-
(h), 5429425200-(c) respectively, and the difference
between {(a) and (b) is 136767000, and the
difference between (a) and (c) is 68863600. In
these calculations, the trend of area difference of
the buffered polyline and buffered spline curve from
the buffered lake boundary follows the trend of area
difference of the real testing values. As previously
explained, the real values from test are smaller than
the theoretical values due to the effect of overlap of
the buffered area from the line sinuosity.
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Table 4 Area Error Propagation During Buffering:
Buffering is Done on Both Inside and Outside

Buffered Difference Diﬂerem:e
Area (m2) | (m):(a)-(b) | (m):(a)-(c)
Lake
Boundary(a) 5369364.500
Polyline(b) |5241089.000 | 128275.500
Spline Curve
of New 5323056.000 46308.500
Bezier(c)

Case 2) Buffering is done onlv on outside
When the buffering is done only on the outside

of polyline (or spline curve), the area of the
buffered polyline (or spline curve) includes the area
within the original polyline (or spline curve) and the
increased area by the buffering. Such area may be
different from the area from buffering the lake
boundary. Thus, the area difference results in error.
For the testing, a 100m buffer distance was
applied along the outside of the polyline (or spline
curve) and the lake boundary. Then, the area
differences were calculated and compared. Table 5
summarizes the testing results. From this table, the
area error from the buffered polyline was bigger
than the area error from the buffered spline curve.

Table 5 Area Error Propagation During Buffering:
Buffering is Done Only on Outside

oy oke Polyline (b) o?p%; %‘é:fﬁr
oundary (a) (c)
Aﬁ:{lfe;;d) 18618590.000 | 18442202.000| 18605050.000
zg)ﬁ"'e;'_';; 176390.000

(?n%fe(rae)n?; 13540.000

To compare these calculations with the
theoretical values from the equation (11) and (13),
the area coefficient should be calculated first.

EOBE28 2000512 8

However, the calculation of this coefficient is not
feasible due to the difficulty in mathematically
formulating the geometric characteristics of the
buffering polyline (or spline curve). One aspect we
can expect about the coefficient is that it may
increase as the buffer distance increases. As the
equation (12) shows,
Cxm

where, C is the coefficient.

To check behavior of C, real values were
calculated for three different buffer distances, 100m,
200m, and 300m for the polyline and spline curve
cases. The calculation of the C was done using the
equation (11) and (13). From these equations, the
C can be calculated as follows,

ch = E;f_;
E, for polyline case
co B
Ey for spline curve case
where, C"and CY indicate the coefficient for

polyline- and spline curve case respectively. Table 6
summarizes the calculation results. From this table,
it is clear that the C coefficient increases as the
buffer distance increases.

Table 6 Calculation of C Coefficient for Different
Buffer Distance

Buffer

Distance |  Esafm’) Enofm’) C

(m)

100 | 176390.000 | 112609.000 | 1.566393
Polyline | 20 |203966.000 | 112609.000 | 1.811276

300 | 206714.000 | 112609.000 | 1.835679
Spline 100 | 13540000 | 7855.000 |1.723743
Curve of | o | 21778000 | 7855.000 |2.773775
Bezier A0 | 23214.000 | 7855.000 |2.955315

From these two tables (Table 5 and Table 6), it
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appears that the area error of the buffering object
is related to the area error of the buffered object.
One more important point is that even though the
error band during the buffering operation is reduced
slightly (Table 4), the area error has increased
significantly after buffering.

4. Summary and Conclusions

This paper 1is dedicated to identify the
propagated error during buffering operation based
For this, two different data
models, polyline and spline curve, are selected,
which are constructed from multiple line segments

on a pilot project.

and multiple spline segments respectively. On these
two data models, the possible error during buffering
was mathematically explained and tested. For
testing, a pilot project was performed using the
Trout Lake boundary, Vilas County, WI, USA. The
experiment results showed that the propagated
position error and area error on the buffered objects
are significantly rely on the error of the buffering
objects.
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