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ON GENERALIZED HAMMING WEIGHTS
OF CYCLIC LINEAR CODES GENERATED
BY A WEIGHT 2 CODEWORD 11

M1 JA Yoo

ABSTRACT We find the generalized Hamming weights of cyclic hnear

g-ary codes which are generated by a codeword of weight 2, and of any
length.

1. Introduction and preliminaries

This paper is a continuity of [1]. Let £, be a field with g elements.
A code is simply a linear subspace €' of 7. The elements of a code
are called codewords, the integer n 1s called the length of the code.
An [n, k]g-code means the code of length n, and of dimension k. In
[3], Wet introduced the notion of gencrahzed Hamming weights and
weight hierarchy for a linear code, which has been motivated by several
applications in cryptography. Let C be an [n, k], code. The weight w(c)
of a codeword ¢ = (c¢y, ¢z, ++ ,¢,) is defined by w(c) = card{: | ¢, # 0}
The weight w(D) of a subcode D of a code C is defined by

w{D) = card{¢ | ¢, # 0 for some c € D}.
The generalized Hammang weights of C are defined as

d(C) = min{w(D) | D is an r-dimensional subspace of C},
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for 1 < r < dimC. The weight hierarchy of a linear code C means
the set of generalized Hamming weights {d,(C) | 1 < r < dimC}.
Also it has been shown in [3] that the weight hierarchy of a linear code
completely characterizes the performance of the code on a type II wire-
tap channel. Here d,(C) is just the minimum distance of C which is
one of important parameters of a code C.

The following are well-known facts on the generalized Hamming
weights.

THEOREM 1.1 (MONOTONICITY) [3]. Let C be an [n, k|4-code, then

1 <d({C) <dz(C) < -+« <dr(C) <n.

THEOREM 1.2 (DUALITY) [3]. Let C be an [n, k]4-code and let C*
be the dual code. Then

{d (Y11 <r<k}={1,2,--- ,n}—{n+1-d(CH) |1 <7 <n—k}.

A matrix G is called a generator matriz of a code C if its rows form
a basis of C. Two codes C) and C, with generating matrices GG and
G2, respectively, are called equivalent if Gy can be transformed into Go
by elementary row operations, by permuting the columns of G; and by
multiplying the columns of Gy, by nonzero scalars.

REMARK. Let Cy and C; be [n, k], codes. If two codes C, and C
are equivalent, then d.(Cy) = d,.(Ch) for L <r < k.

A code C is said to be cychic if (¢1,¢2,++ ,en—1,60) € C for any
(ca,c1,-++ yen-1) € C. A cyclic code C is said to be generated by a
codeword ¢ if C is the smallest cyclic code containing c. In this paper,
we find the generalized Hamming weights of a cyclic code C which is
generated by single codeword of weight 2.

Consider a natural vector space homomorphism

¢ : Folzj/(z™ — 1) — F"
defined by
¢(O‘,0 +ax+---+ "-]"rz,—lar:n_1 + (mn - 1)) = (a(}aa’h tee :an—-l)‘

Using this map we obtain the following theorems.
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THEOREM 1 3 [2] There is an one-to-one correspondence belween
cychc codes of length n and the ideals of Fylz]/(x™—1). Moreover, there

is an one-to-one correspondence between cychc codes and the factors
of ™ — 1.

THEOREM 1.4 [1] Let C be a cychc code of length n generated
by a codeword (co,cy, -+ ,¢n—1). Then C corresponds to the ideal in
Fylzl/(z™ — 1) generated by g(z) + (a™ — 1), where g{x) = ged{co +
1T+ -+ ez 2 — 1}

Each cyclic code C of length n corresponds to the unique polynomial
g(z), a divisor of ™ — 1. We call this polynomial g(x) the generator
polynomual of the cyclic code C. More precisely, if g(z) = a0 + a1 +

-+ ai_;x'" + !, then the cyclic code C is generated by the rows of
the matrix

gy @, a7 ... 1 0 0o ... 0
0 aj a1 ... a1 1 0 ... O
0 0 ap ... ai—92 Qi1 1 ... 0
0 0 0 ... ag a) a9 ... 1

2. Main Remarks

We use the following lemmas to prove our main theorem.

LEMMA 2 1 [1] Let C be a cychic code uth the generator matriz G
| L
| L
G= Il(a.-—l) I
| L
| I Ha—1)xla,
where the wintegers a,l > 2, Iy, denotes the k x k wdentity matriz. Then
dr(C)=r+faT - for 1< < Ua-1).
Let C be a cyclic code of length n with the generator polynomial

9(z) = 2t — a. We will prove that a generator matrix of C' is equivalent
to the matrix in Lemma 2.1.




170 MI JA YOO

LEMMA 2.2 Let C be a cyclic code of length n with the generator
polynomial o' — o, where a € Fy. Then

(1) If i 13 the order of a, then n 1s a multiple of il.

(2} A generator matrz G’ of C 1s

{ (05_1)"215\

(a—l)i—3II
I;

I
1
!
. O
l
l
|
|
!

il

—0 (1) :
I

(a-— l)t— le
1y / {tm—1)Ixaml,

\
where m = :’-l

PROOF (1) Let n={d+r with 0 <7 <. Then
:L,n__lzmld-!-r_l
— (xl)da:r -1
=@ -a+a)e -1

= alz" — 1 ( mod z! - a).

Since ' —  is the generator polynomial of C and r < I, afz" —1 = 0.

Hence r = 0, o = 1. On the other hand, the order of & is ¢ and so d
is a multiple of ¢. Therefore n 1s a multiple of il.

(2) Since 2! — « is the generator polynomial of C and a generator
matrix G for C is

—a 0 g ... 1 0 0 g
0 —-a 0 ... 0 10 0
0 0 -« 0 0 1 0
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where the number 1 1s in the (I + 1)-th place in the first row. We
perform the following elementary row operation on the matrix G ;

’ -1 —152
v, =0+ a vt (a7 Y vy e

for each 3y = 1,2,--- ,n — 2l, where v, denotes the i-th row of G. Then

we obtain another generator matrix G/ whose rows are v; ;

a~! 1.—21
, Fae)

I

|

|
o : (a-—l?z—lIl
i

li

—al(im—1y1 :
I

?
t

{ (a*l)i—lfz
\ l I / (zm—1)Ixunl.

LEMMA 2 3 The follounng two matrices G and G"' arc equivalent

|

|

G= Il(a—l) {
|

l{a~1)xla,

alfz
oI

"o
G = alyq1) |

aa—QIl

| ey l{a—1)x!a,

where o, o, € I, the integers l,a > 2.
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Proor We perform the following elementary row operation on G”/;

v; =arly) for 1<j <,

v =y M) for il << (i 1),

foreachi=1,2,.-- ,a—2, where v} denotes the i-th row of G”. Then

we obtain the generator matrix G’ whose rows are v%;
b

a;“alg

-1
ay”adh
G =

RS

|
|
1
agTraly | H{a—1) xla.

Once more, we perform the following elementary column operation on

the matrix G’;

w; = o lagw) for 1<j<U,

w, = a*la,w;- for il <j<{i+1)j

for each i =1,2,-. ,a — 2, where w} denotes the j-th column of G'.
Then we obtain the generator matrix G whose columns are w,;

| L

| L
G = Tjfa—1) |

| I

’ II {la—1)xia.

THEOREM 2 4. Let C be a cyclic code of length n generated by
weight 2 codeword (co,c1,- - ,en1) wnth c, = —PB,c; = 1 for s < t.
Then the generalized Hamming weights of C are as follows;

4(0) = {

r+[-25] fori1<r<lla—1)or
T, for 1 <r <m,

where | = ged{t — s,n},a = 3.
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PROOF By the definition of cyclic code, we may assume that {co, c1,

< ,€p—1) Where cg = —f8, ¢; = 1 and j = ¢t — s. By Theorem 1.4,
C corresponds to the ideal of Fy{z]/(z" — 1) generated by g{z} =
ged{z? — B,z" — 1}. Let n = jd +r with 0 < r < j — 1. Since

"t —1 =24 1

= (@'~ p Y ~1
= 3%" —1 { mod 2’ — 3)

=z — pg¢ ( mod z’ — 3),

by Buclidean Algorithm, we see that ged{z? — 8,2" — 1} is 2! —a or
1, where a € F,,I = gcd{s,n}. Hence the generator polynomial g(z)
of Ciszt —aorl.

Case 1. If g(z) = 1, then d.(C) =r for 1L <r < n.

Case 2. Let g(x) = 2! — o and let i be the order of a. Then by
Lemma 2.2, n = ilm for some integer m and a generator matrix G for

Cis

pe

(Offl)z_lfl

|
|
[ :
| v
I
— 0 ym 1y | :
| I
| :
I (a-l)z—lh
\ | Iy ) (im—1)} x2mli.

By Lemma 2.3, the generator matrix G for C is equivalent to the
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following matrix G’;

I (zm—1)I

(zm—1)ixla.
Puting @ = im, by Lemma 2.1 we obtain

r

d.(C)y=7r+] Jfor1<r<lle-1).

a—1
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