ON GENERALIZED HAMMING WEIGHTS OF CYCLIC LINEAR CODES GENERATED BY A WEIGHT 2 CODEWORD II

Mi Ja Yoo

ABSTRACT We find the generalized Hamming weights of cyclic linear q-ary codes which are generated by a codeword of weight 2, and of any length.

1. Introduction and preliminaries

This paper is a continuity of [1]. Let F_q be a field with q elements. A code is simply a linear subspace C of F_q^n . The elements of a code are called codewords, the integer n is called the length of the code. An $[n,k]_q$ -code means the code of length n, and of dimension k. In [3], Wei introduced the notion of generalized Hamming weights and weight hierarchy for a linear code, which has been motivated by several applications in cryptography. Let C be an $[n,k]_q$ code. The weight w(c) of a codeword $c = (c_1, c_2, \dots, c_n)$ is defined by $w(c) = \operatorname{card}\{i \mid c_i \neq 0\}$. The weight w(D) of a subcode D of a code C is defined by

$$w(D) = \operatorname{card}\{i \mid c_i \neq 0 \text{ for some } c \in D\}.$$

The generalized Hamming weights of C are defined as

$$d_r(C) = \min\{w(D) \mid D \text{ is an } r\text{-dimensional subspace of } C\},$$

This work was supported by Korea Research Foundation Grant (KRF'-99-005-D00003).

Received November 12, 2000 Revised June 5, 2001

²⁰⁰⁰ Mathematics Subject Classification. 94B05, 51E20, 05B25

Key words and phrases: linear code, cyclic code, generalized Hamming weight

for $1 \leq r \leq \dim C$. The weight hierarchy of a linear code C means the set of generalized Hamming weights $\{d_r(C) \mid 1 \leq r \leq \dim C\}$. Also it has been shown in [3] that the weight hierarchy of a linear code completely characterizes the performance of the code on a type II wiretap channel. Here $d_1(C)$ is just the minimum distance of C which is one of important parameters of a code C.

The following are well-known facts on the generalized Hamming weights.

THEOREM 1.1 (MONOTONICITY) [3]. Let C be an $[n, k]_q$ -code, then $1 \le d_1(C) < d_2(C) < \cdots < d_k(C) < n$.

THEOREM 1.2 (DUALITY) [3]. Let C be an $[n,k]_q$ -code and let C^{\perp} be the dual code. Then

$$\{d_r(C) \mid 1 \le r \le k\} = \{1, 2, \cdots, n\} - \{n+1-d_r(C^{\perp}) \mid 1 \le r \le n-k\}.$$

A matrix G is called a generator matrix of a code C if its rows form a basis of C. Two codes C_1 and C_2 with generating matrices G_1 and G_2 , respectively, are called equivalent if G_1 can be transformed into G_2 by elementary row operations, by permuting the columns of G_1 and by multiplying the columns of G_1 , by nonzero scalars.

REMARK. Let C_1 and C_2 be $[n,k]_q$ codes. If two codes C_1 and C_2 are equivalent, then $d_r(C_1) = d_r(C_2)$ for $1 \le r \le k$.

A code C is said to be cyclic if $(c_1, c_2, \dots, c_{n-1}, c_0) \in C$ for any $(c_0, c_1, \dots, c_{n-1}) \in C$. A cyclic code C is said to be generated by a codeword c if C is the smallest cyclic code containing c. In this paper, we find the generalized Hamming weights of a cyclic code C which is generated by single codeword of weight 2.

Consider a natural vector space homomorphism

$$\phi: F_q[x]/(x^n-1) \longrightarrow F_q^n$$

defined by

$$\phi(a_0+a_1x+\cdots+a_{n-1}x^{n-1}+(x^n-1))=(a_0,a_1,\cdots,a_{n-1}).$$

Using this map we obtain the following theorems.

THEOREM 1 3 [2] There is an one-to-one correspondence between cyclic codes of length n and the ideals of $F_q[x]/(x^n-1)$. Moreover, there is an one-to-one correspondence between cyclic codes and the factors of x^n-1 .

THEOREM 1.4 [1] Let C be a cyclic code of length n generated by a codeword $(c_0, c_1, \dots, c_{n-1})$. Then C corresponds to the ideal in $F_q[x]/(x^n-1)$ generated by $g(x)+(x^n-1)$, where $g(x)=gcd\{c_0+c_1x+\dots+c_{n-1}x^{n-1},x^n-1\}$.

Each cyclic code C of length n corresponds to the unique polynomial g(x), a divisor of $x^n - 1$. We call this polynomial g(x) the generator polynomial of the cyclic code C. More precisely, if $g(x) = a_0 + a_1 + \cdots + a_{l-1}x^{l-1} + x^l$, then the cyclic code C is generated by the rows of the matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 & \dots & 1 & 0 & 0 & \dots & 0 \\ 0 & a_0 & a_1 & \dots & a_{l-1} & 1 & 0 & \dots & 0 \\ 0 & 0 & a_0 & \dots & a_{l-2} & a_{l-1} & 1 & \dots & 0 \\ & & & \ddots & & & \ddots & \\ 0 & 0 & 0 & \dots & a_0 & a_1 & a_2 & \dots & 1 \end{pmatrix}.$$

2. Main Remarks

We use the following lemmas to prove our main theorem.

Lemma 2.1 [1] Let C be a cyclic code with the generator matrix G

$$G = \left(egin{array}{ccccc} & & & I_l \ & & & I_l \ & & & & \vdots \ & & & I_l \ & & & & I_l \ \end{array}
ight)_{I(a-1) imes la,}$$

where the integers $a, l \geq 2$, I_k denotes the $k \times k$ identity matrix. Then

$$d_r(C) = r + \lceil \frac{r}{a-1} \rceil$$
 for $1 \le r \le l(a-1)$.

Let C be a cyclic code of length n with the generator polynomial $g(x) = x^{l} - \alpha$. We will prove that a generator matrix of C is equivalent to the matrix in Lemma 2.1.

LEMMA 2.2 Let C be a cyclic code of length n with the generator polynomial $x^l - \alpha$, where $\alpha \in F_q$. Then

- (1) If i is the order of α , then n is a multiple of il.
- (2) A generator matrix G' of C is

where $m = \frac{n}{n}$.

PROOF (1) Let n = ld + r with $0 \le r \le l$. Then

$$x^{n} - 1 = x^{ld+r} - 1$$

$$= (x^{l})^{d}x^{r} - 1$$

$$= (x^{l} - \alpha + \alpha)^{d}x^{r} - 1$$

$$\equiv \alpha^{d}x^{r} - 1 \pmod{x^{l} - \alpha}.$$

Since $x^l - \alpha$ is the generator polynomial of C and $r \leq l$, $\alpha^d x^r - 1 = 0$. Hence r=0, $\alpha^d=1$. On the other hand, the order of α is i and so d is a multiple of i. Therefore n is a multiple of il.

(2) Since $x^l - \alpha$ is the generator polynomial of C and a generator matrix G for C is

$$\begin{pmatrix} -\alpha & 0 & 0 & \dots & 1 & 0 & 0 & \dots & 0 \\ 0 & -\alpha & 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & -\alpha & \dots & 0 & 0 & 1 & \dots & 0 \\ & & & \ddots & & & \ddots & \\ 0 & 0 & 0 & \dots & -\alpha & 0 & 0 & \dots & 1 \end{pmatrix}$$

where the number 1 is in the (l+1)-th place in the first row. We perform the following elementary row operation on the matrix G;

$$v'_{j} = v_{j} + \alpha^{-1}v_{j+l} + (\alpha^{-1})^{2}v_{j+2l} + \cdots$$

for each $j = 1, 2, \dots, n-2l$, where v_i denotes the *i*-th row of G. Then we obtain another generator matrix G' whose rows are v'_i ;

Lemma 2.3 The following two matrices G and G'' are equivalent

where $\alpha, \alpha_i \in F_q$, the integers $l, a \geq 2$.

PROOF We perform the following elementary row operation on G'';

$$v_j' = \alpha_1^{-1} v_j'' \quad ext{for} \quad 1 \le j \le l,$$
 $v_j' = {\alpha_{i+1}}^{-1} v_j'' \quad ext{for} \quad il < j \le (i+1)l,$

for each $i = 1, 2, \dots, a-2$, where v_i'' denotes the *i*-th row of G''. Then we obtain the generator matrix G' whose rows are v_i' ;

$$G' = \begin{pmatrix} \alpha_1^{-1} \alpha I_l & & & & I_l \\ & \alpha_2^{-1} \alpha I_l & & & & I_l \\ & & \ddots & & & & \vdots \\ & & & \alpha_{a-1}^{-1} \alpha I_l & & & I_l \end{pmatrix}_{l(a-1) \times la.}$$

Once more, we perform the following elementary column operation on the matrix G';

$$\begin{split} w_j &= \alpha^{-1} \alpha_1 w_j' \quad \text{for} \quad 1 \leq j \leq l, \\ w_j &= \alpha^{-1} \alpha_i w_j' \quad \text{for} \quad il < j \leq (i+1)j, \end{split}$$

for each $i = 1, 2, \dots, a - 2$, where w'_j denotes the j-th column of G'. Then we obtain the generator matrix G whose columns are w_j ;

$$G = \begin{pmatrix} & & & \mid & I_l \\ & & & \mid & I_l \\ & I_{l(a-1)} & & \mid & \vdots \\ & & & \mid & I_l \end{pmatrix}_{l(a-1) \times la.}$$

THEOREM 2.4. Let C be a cyclic code of length n generated by weight 2 codeword $(c_0, c_1, \dots, c_{n-1})$ with $c_s = -\beta, c_t = 1$ for s < t. Then the generalized Hamming weights of C are as follows;

$$d_r(C) = \begin{cases} r + \lceil \frac{r}{a-1} \rceil & \text{for } 1 \le r \le l(a-1) \text{ or } \\ r, & \text{for } 1 \le r \le n, \end{cases}$$

where $l = gcd\{t - s, n\}, a = \frac{n}{l}$.

PROOF By the definition of cyclic code, we may assume that $(c_0, c_1, \dots, c_{n-1})$ where $c_0 = -\beta$, $c_j = 1$ and j = t - s. By Theorem 1.4, C corresponds to the ideal of $F_q[x]/(x^n - 1)$ generated by $g(x) = \gcd\{x^j - \beta, x^n - 1\}$. Let n = jd + r with $0 \le r \le j - 1$. Since

$$x^{n} - 1 = x^{jd+r} - 1$$

$$= (x^{j} - \beta + \beta)^{d} x^{r} - 1$$

$$\equiv \beta^{d} x^{r} - 1 \pmod{x^{j} - \beta}$$

$$\equiv x^{r} - \beta^{-d} \pmod{x^{j} - \beta},$$

by Euclidean Algorithm, we see that $\gcd\{x^j - \beta, x^n - 1\}$ is $x^l - \alpha$ or 1, where $\alpha \in F_q, l = \gcd\{j, n\}$. Hence the generator polynomial g(x) of C is $x^l - \alpha$ or 1.

Case 1. If g(x) = 1, then $d_r(C) = r$ for $1 \le r \le n$.

Case 2. Let $g(x) = x^{l} - \alpha$ and let i be the order of α . Then by Lemma 2.2, n = ilm for some integer m and a generator matrix G for C is

By Lemma 2.3, the generator matrix G for C is equivalent to the

following matrix G';

$$G' = \left(egin{array}{cccc} & & & & \mid & I_l \ & & & \mid & I_l \ & & & \mid & dots \ & & & \mid & dots \ & & & \mid & dots \ & & & \mid & I_l \ & & & \mid & I_l \ \end{array}
ight)_{(im-1)l imes la.}$$

Puting a = im, by Lemma 2.1 we obtain

$$d_r(C) = r + \lceil \frac{r}{a-1} \rceil$$
 for $1 \le r \le l(a-1)$.

REFERENCES

- [1] S J Kim and M J Yoo, On Generalized Hamming weights of cyclic linear codes generated by a weight 2 codeword, Pusan Kyongnam Math 12 (1996), 155-162
- [2] R.F. Lax, Modern Algebra and Discrete Structures, Harper Collins Publishers Inc., 1991
- [3] V.K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform Theory 37 (1991), 1412-1418

Department of Mathematics Gyeongsang National University Chinju 660-701, Korea