PROPERTIES OF THE FIRST ALGEBRAIC LOCAL COHOMOLOGY GROUP AND GRÖBNER BASIS

C J Kang, J A Kim, H Y Moon and K. H. Shon

1. Introduction

In this paper, we study some properties of the first algebraic local cohomology groups and Gröbner basis for residue calculus based on the papers S. Tajima [6,7]. For a given meromorphic fuction $u(z)$, we can treat the principal part m of $u(z)$ as an element of the algebraic local cohomology group $\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)$ by setting $m=u(z) \bmod \mathcal{O}_{X}$ where \mathcal{O}_{X} is the sheaf of holomorphic functions. Since $\phi(z)$ is holomorphic in X, it suffices to consider $m=u(z) \bmod \mathcal{O}_{X}$ instead of $u(z)$ when we compute the residue of $\phi(z) u(z) d z$. S. Tajima and Y. Nakamura [5] investigated the residue calculus and Horowitz's algorithm for rational function with differential equation.

We investigate some properties of modules, extension groups and the algebraic local cohomology and introduce a Gröbner basis that is very useful for computing the residues.

2. Preliminaries

We introduce some tools from the theory of extension group induced by homomorphism theories: modules, extension groups, the first algebraic local cohomology group and Gröbner basis.

[^0]Theorem 2.1[3] Every free module F over a rang A with identzty is projectrve.

Let Λ be a ring and A, B be Λ-modules. We let
$H o m_{\Lambda}(A, B):=\{\varphi \mid \varphi: A \rightarrow B$ is a Λ-module homomorphism $\}$.
Theorem 2 2[2]. (1) Let $0 \longrightarrow B^{\prime} \xrightarrow{\mu} B \xrightarrow{\epsilon} B^{\prime \prime}$ be an exact sequence of Λ-modules. For every Λ-module A, the induced sequence $0 \longrightarrow \operatorname{Hom}_{\Lambda}\left(A, B^{\prime}\right) \xrightarrow{\mu \bullet} \operatorname{Hom}_{\Lambda}(A, B) \xrightarrow{\varepsilon_{\bullet}} \operatorname{Hom}_{\Lambda}\left(A ; B^{\prime \prime}\right)$ is exact.
(2) Let $A^{\prime} \xrightarrow{\mu} A \xrightarrow{\varepsilon} A^{\prime \prime} \longrightarrow 0$ be an exact sequence of Λ-modules. For every Λ-module B, the induced sequence $0 \longrightarrow \operatorname{Hom}_{\Lambda}\left(A^{\prime \prime}, B\right) \xrightarrow{\varepsilon^{*}}$ $\operatorname{Hom}_{\Lambda}(A, B) \xrightarrow{\mu^{*}} \operatorname{Hom}_{\Lambda}\left(A^{\prime}, B\right)$ is exact.

Definition 2.3 A short exact sequence $0 \longrightarrow R \xrightarrow{\mu} P \xrightarrow{\varepsilon} A \longrightarrow$ 0 of Λ-modules with P projective is called a projective presentation of A.

Definition 2.4 To the Λ-modules A, B and to the projective presentation of A given in the Definition 2.4, we can associate the abelian group

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}(A, B) & =\operatorname{coker}\left(\mu^{*}: \operatorname{Hom}_{\Lambda}(P, B) \longrightarrow \operatorname{Hom}_{\Lambda}(R, B)\right), \\
& =\operatorname{Hom}_{\Lambda}(R, B) / \operatorname{Im}^{*}
\end{aligned}
$$

Now, we deduce two exact sequences connecting Hom and Ext.
Theorem 2 5[2]. Let A be a Λ-module and let $0 \longrightarrow B^{\prime} \xrightarrow{\varphi} B \xrightarrow{\psi}$ $B^{\prime \prime} \longrightarrow 0$ be a short exact sequence of Λ-modules. Then there exists a "connecting homomorphism" $\omega: \operatorname{Hom}_{\Lambda}\left(A, B^{\prime \prime}\right) \longrightarrow \operatorname{Ext}_{\Lambda}(A, B)$ such that the followng sequence is exact :

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{\Lambda}\left(A, B^{\prime}\right) \xrightarrow{\varphi \cdot} \operatorname{Hom}_{\Lambda}(A, B) \xrightarrow{\psi \cdot} \operatorname{Hom}_{\Lambda}\left(A, B^{\prime \prime}\right) \\
& \xrightarrow{\omega} \operatorname{Ext}_{\Lambda}\left(A, B^{\prime}\right) \xrightarrow{\varphi \cdot} \operatorname{Ext}_{\Lambda}(A, B) \xrightarrow{\psi} \operatorname{Ext}_{\Lambda}\left(A, B^{\prime \prime}\right) .
\end{aligned}
$$

Definition 26 (1) A graded Λ-module A (graded by the integers) is a family of A-modules $A=\left\{A_{n}\right\}, n \in \mathbb{Z}$.
(2) If A, B are graded Λ-modules (i.e. $A=\left\{A_{n}\right\}, B=\left\{B_{n}\right\}$, $n \in \mathbb{Z}$), a morphism $\varphi: A \rightarrow B$ of degree k is a family of Λ-module homomorphisms $\left\{\varphi_{n}: A_{n} \rightarrow B_{n+k}\right\}, n \in \mathbb{Z}$.

The category so defined is denoted by $\mathfrak{M}_{\Lambda}^{\mathbb{Z}}$, a graded (left) module.
Definition 27 A cochain complex $\mathbf{C}=\left\{C_{n}, \delta_{n}\right\}$ is an object in $\mathfrak{M}_{\Lambda}^{\mathbb{Z}}$ together with an endomorphism $\delta: \mathbf{C} \rightarrow \mathbf{C}$ of degree +1 with $\delta \delta=0$.

Definition 28 A cochain map $\varphi: C \rightarrow D$ is a morphism of degree 0 in $\mathfrak{M}_{\Lambda}^{\mathbb{Z}}$ such that $\varphi \delta=\tilde{\delta} \varphi$ where $\tilde{\delta}$ is coboundary operator in D. Thus φ is a family $\left\{\varphi^{n}: C^{n} \rightarrow D^{n}\right\}, n \in \mathbb{Z}$ of homomorphisms such that the diagram
is commutative.

$$
\begin{aligned}
& C^{n} \xrightarrow{\delta^{n}} C^{n+1}
\end{aligned}
$$

Definition 210 Given a cochain complex $\mathbf{C}=\left\{C^{n}, \delta^{n}\right\}$, we define its cohomology module $H(C)=\left\{H^{n}(C)\right\}$ by

$$
H^{n}(C)=\operatorname{ker} \delta^{n} / \operatorname{Im} \delta^{n-1}, \quad n \in \mathbb{Z}
$$

If $\Lambda=\mathbb{Z}, H(C)$ is called the cohomology group of C. A cochain map $\varphi: C \rightarrow D$ induces a morphism of graded modules $H(\varphi)=\varphi^{*}$: $H(C) \rightarrow H(D)$.

3. Algebraic local cohomology group and Gröbner basis

In this section, we use the ideas and the results of M. Kashiwara [4] and N. Takayama [8].

Theorem 3 1. Using the above notations, we have

$$
\left\{\begin{array}{l}
H^{0}(\mathbf{C})=\operatorname{Hom}_{\Lambda}(A, B) \\
H^{1}(\mathbf{C})=\operatorname{Ext}_{\Lambda}(A, B) \\
H^{n}(\mathbf{C})=0, \quad n \neq 0,1
\end{array}\right.
$$

Proof. We have $H^{0}(\mathbf{C})=\operatorname{ker} \delta^{0} / \operatorname{Im} \delta^{-1}=$ ker μ^{*}. Since $0 \longrightarrow$ $H o m_{\Lambda}(A, B) \xrightarrow{\varepsilon^{*}} H o m_{\Lambda}(P, B) \xrightarrow{\mu^{*}} H o m_{\Lambda}(R, B)$ is exact, from D. A. $\operatorname{Cox}[1]$, ker $\mu^{*}=\operatorname{Im} \varepsilon^{*} \cong \operatorname{Hom}(A, B)$. Hence $H^{0}(\mathbf{C}) \cong \operatorname{Hom}_{\mathrm{A}}(A, B)$. On the other hand, $H^{1}(\mathbf{C})=$ ker $\delta^{1} / \operatorname{Im} \delta^{0}=C^{1} / \operatorname{Im} \delta^{0}=$ $H o m_{\Lambda}(R, B) / \operatorname{Im} \mu^{*}=\operatorname{Ext}_{\Lambda}(A, B)$ from Definition 2.5.

THEOREM $32 \quad$ If $0 \longrightarrow \mathbf{A} \xrightarrow{\varphi} \mathbf{B} \xrightarrow{\psi} \mathbf{C} \longrightarrow 0$ is an exact sequence of cochain complexes, then the sequence

$$
\cdots \xrightarrow{\omega^{n-1}} H^{n}(\mathbf{A}) \xrightarrow{\varphi^{*}} H^{n}(\mathbf{B}) \xrightarrow{\psi^{*}} H^{n}(\mathbf{C}) \xrightarrow{\omega^{n}} H^{n+1}(\mathbf{A}) \longrightarrow \cdots
$$

is exact.
Proof From the exact sequence $0 \longrightarrow \mathbf{A} \xrightarrow{\varphi} \mathbf{B} \xrightarrow{\psi} \mathbf{C} \longrightarrow 0$, we have a morphism of degree +1 of graded modules $\omega: H(\mathbf{C}) \rightarrow H(\mathbf{A})$ such that the diagram

is exact, from the result of P. J. Hilton and U. Stammbach [2]. This implies that the long sequence is exact.

Definition 3.3. Let X be a simply connected domain in the complex plane $\mathbb{C}, \mathcal{O}_{X}$ be the sheaf on X of holomorphic functions. Let $A=\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\} \subset X$ and \mathfrak{I}_{A} is the ideal generated by $\prod_{j=1}^{n}\left(x-\alpha_{j}\right)$
in \mathcal{O}_{X}. Put $A_{j}=\left\{\alpha_{j}\right\}, j=1,2, \cdots n$. The first algebraic local cohomology group with support in A is defined as the inductive limit of extension groups

$$
\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)=\underset{l \rightarrow \infty}{\lim } \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X} / \mathfrak{I}_{A}^{l}, \mathcal{O}_{X}\right)
$$

The extension group and the algebraic local cohomology group can be explained as follows. We have a short exact sequence:
By Theorem 2.6(2), we have a long exact sequence:
Lemma 34 For an exact sequence

$$
0 \longrightarrow \mathfrak{I}_{A_{3}}^{l} \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{X} / \mathfrak{I}_{A_{3}}^{l} \longrightarrow 0
$$

we have $\mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X} / \mathfrak{J}_{A_{3}}^{l}, \mathcal{O}_{X}\right)=0, \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)=\mathcal{O}_{X}$ and $\mathcal{E x} t_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)=0$.

Proof. We have an exact sequence $0 \longrightarrow \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X} / \mathfrak{I}_{A_{3}}^{l}, \mathcal{O}_{X}\right)$ $\longrightarrow \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \longrightarrow \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathfrak{J}_{A^{l}}^{l}, \mathcal{O}_{X}\right) \longrightarrow \mathcal{E x t}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X} / \mathfrak{I}_{A^{l}}^{l}, \mathcal{O}_{X}\right)$ $\longrightarrow \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \longrightarrow \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\mathfrak{S}_{A_{,}^{l}}^{l}, \mathcal{O}_{X}\right)$.

For $\phi \in \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X} / \mathfrak{I}_{A^{l}}^{l}, \mathcal{O}_{X}\right)$ and $\phi(1)=f \in \mathcal{O}_{X}$, since $(x-$ $\left.\alpha_{j}\right)^{l} \in \mathfrak{I}_{A}^{l}$, we have $\left(x-\alpha_{j}\right)^{l}=0$ in $\mathcal{O}_{X} / \mathfrak{I}_{A_{3}}^{l}$ from S . Tajıma and Y . Nakamura [6]. Since ϕ is an \mathcal{O}_{X}-module homomorphism, $0=\phi((x-$ $\left.\left.\alpha_{j}\right)^{l}\right)=\left(x-\alpha_{j}\right)^{l} \phi(1)=\left(x-\alpha_{j}\right)^{l} f$. Thus $f=\phi(1)=0$ and for any $g \in \mathcal{O}_{X} / \mathcal{I}_{A_{g}}^{l}, \phi(g)=g \phi(1)=0$. Hence ϕ is zero homomorphism.
(2) If we define a map $F: \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \mathcal{O}_{X}$ by $F(\phi)=\phi(1)$

(3) Let $\Lambda=\mathcal{O}_{X}$ be the sheaf of rings. Then \mathcal{O}_{X} is an \mathcal{O}_{X}-module. Since \mathcal{O}_{X} is a free module, by T. W. Hungerford [3], \mathcal{O}_{X} is a projective module. By P. J. Hilton and U. Stammbach [2], $\mathcal{E} x t_{\mathcal{O}_{X}}^{\mathrm{j}}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)=0$.

From Lemma 3.4, we get the following exact sequence :

$$
0 \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathfrak{I}_{A_{J}}^{l}, \mathcal{O}_{X}\right) \longrightarrow \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X} / \mathfrak{I}_{A_{g}}^{l}, \mathcal{O}_{X}\right) \longrightarrow 0
$$

This implies the following isomorphism :

$$
\mathcal{E x t}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X} / \mathfrak{I}_{A_{3}}^{l}, \mathcal{O}_{X}\right) \cong \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{I}_{A_{j}}^{l}, \mathcal{O}_{X}\right) / \mathcal{O}_{X}
$$

Since $\mathcal{H o m}_{\mathcal{O}_{X}}\left(\boldsymbol{J}_{A}^{l}, \mathcal{O}_{X}\right)$ can be understood as the sheaf of meromorphic functions with poles of order at most l at A_{J}, by Definition 2.8, we have

$$
\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right) \cong \mathcal{O}_{X}\langle * A\rangle / \mathcal{O}_{X}
$$

where $\mathcal{O}_{X}\langle * A\rangle$ is the sheaf of meromorphic functions on X with poles at most at A.

Let \mathcal{D}_{X} be the sheaf of rings on X of linear differential operators of finite order with holomorphic coefficients. This means that if U is an open set in X, a section in $\mathcal{D}_{X}(U)$ is a differential operator $D=\sum_{j=0}^{n} \alpha_{3}(z) \frac{\partial^{3}}{\partial z^{j}}$, where $\alpha_{j}(z) \in \mathcal{O}_{X}(U)$. Then \mathcal{D}_{X} is coherent as a sheaf of rings.

Theorem 3.5 (1) $\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)$ is a coherent left \mathcal{D}_{X}-module.
(2) The first algebraic local cohomology group with support at a single point is simple as \mathcal{D}_{X}-module.

Proof. (1) Let $P=\sum_{j} \alpha_{j}(z) \frac{\partial^{3}}{\partial z^{j}} \in \mathcal{D}_{X}$ and $[r]=r \bmod \mathcal{O}_{X} \in$ $\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)$ where $r \in \mathcal{O}_{X}\langle * A\rangle$. Define a map $\mathcal{D}_{X} \times \mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right) \rightarrow$ $\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)$ by $(P,[r]) \mapsto[P r]$. Since $\operatorname{Pr} \in \mathcal{O}_{X}\langle * A\rangle,[\operatorname{Pr}] \in \mathcal{O}_{X}\langle * A\rangle / \mathcal{O}_{X}$ $=\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)$ from S. Tajima and Y. Nakamura [6]. Thus $\mathcal{H}_{[A]}^{2}\left(\mathcal{O}_{X}\right)$ is a left \mathcal{D}_{X}-module.
(2) Let $\delta=\left[\frac{1}{z-\alpha_{\boldsymbol{\alpha}}}\right] \in \mathcal{H}_{\left[\alpha_{j}\right]}^{1}\left(\mathcal{O}_{X}\right)$. Then δ generates $\mathcal{H}_{\left[\alpha_{,}\right]}^{1}\left(\mathcal{O}_{X}\right)$. Let $N \subset \mathcal{H}_{\left[\alpha_{j}\right]}^{1}\left(\mathcal{O}_{X}\right)$ be an ideal as \mathcal{D}_{X}-module with $N \neq\{0\}$ and let $\eta(\neq 0) \in N$. Then $\eta=\sum_{k=1}^{n}\left[\frac{C_{k}}{\left(z-\alpha_{j}\right)^{k}}\right], C_{k} \in \mathbb{C}$ and $\delta=\frac{\left(z-\alpha_{j}\right)^{n-1}}{C_{n}} \eta \in$ $\mathcal{D}_{X} \eta$. Thus $\mathcal{D}_{X} \eta=\mathcal{D}_{X} \delta=\mathcal{H}_{[\boldsymbol{\alpha},]}^{1}\left(\mathcal{O}_{X}\right)$. Since $\mathcal{H}_{[\alpha, j]}^{1}\left(\mathcal{O}_{X}\right) \supset N \supset$ $\mathcal{D}_{X} \eta=\mathcal{H}_{\left[\alpha_{,}\right]}^{1}\left(\mathcal{O}_{X}\right), N=\mathcal{H}_{\left[\alpha_{\}}\right\}}^{1}\left(\mathcal{O}_{X}\right)$. Hence $\mathcal{H}_{\left[\alpha_{\boldsymbol{j}}\right]}^{1}\left(\mathcal{O}_{X}\right)$ is simple.

Now, we introduce Gröbner basis which is useful not only for computing residues but for solving other problems such as solving a system of polynomial equations, etc.

One of the simplest monomial orders is lextcographic(lex for short), which is defined by

$$
x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}>_{\text {lex }} x_{1}^{b_{1}} \cdots x_{n}^{b_{n}} \Leftrightarrow a_{1}>b_{1}, \text { or } a_{1}=b_{1} \text { and } a_{2}>b_{2}, \text { etc. }
$$

Definition 36 If $f=\sum_{\alpha} c_{\alpha} x^{\alpha} \in K\left[x_{1}, \cdots, x_{n}\right], c_{\alpha} \in K$ and $>$ is a monomial order, then a term of f is $c_{\alpha} x^{\alpha}$ for $c_{\alpha} \neq 0$ and the leading term of f is $L T(f)=\max >\left\{c_{\alpha} x^{\alpha} \mid c_{\alpha} \neq 0\right\}$ where $m a x_{>}$means the maximum with respect to $>$.

Theorem 38 (The general division adgorithm) We assume that a monomial order $>$ on $K\left[x_{1}, \cdots, x_{n}\right\}$ is given. If we divide $f \in K\left[x_{1}, \cdots, x_{n}\right]$ by $f_{1}, \cdots, f_{s} \in K\left[x_{1}, \ldots, x_{n}\right]$, we can look for an expression of the form

$$
f=q_{1} f_{1}+\cdots+q_{s} f_{s}+r
$$

where the remainder r should satusfy that no term of r as divisible by any of $L T\left(f_{1}\right), \cdots, L T\left(f_{s}\right)$. Furthermore, $L T(f) \geq L T\left(q_{2} f_{2}\right), \quad 1 \leq i \leq s$.

The algorithm gives different remainders by changing the order of f_{1}, \cdots, f_{s}.

Definition 39. Let $f_{1}, \cdots, f_{s} \in K\left[x_{1}, \cdots, x_{n}\right]$.
(1) $\left\langle f_{1}, \cdots, f_{s}\right\rangle=\left\{\sum_{2=1}^{s} h_{2} f_{2} \mid h_{2} \in K\left[x_{1}, \cdots, x_{n}\right]\right\}$ is the deal generated by f_{1}, \cdots, f_{s}.
(2) $\mathbf{V}\left(f_{1}, \cdots, f_{s}\right)=\left\{p \in K^{n} \mid f_{1}(p)=\cdots=f_{s}(p)=0\right\} \subset K^{n}$ is called the affine variety.
(3) Given any ideal $I \subset K\left[x_{1}, \cdots, x_{n}\right]$, we define $\mathbf{V}(I)=\{p \in$ $K^{n} \mid f(p)=0$ for all $\left.f \in I\right\} \subset K^{n}$.

Theorem 310 (Hilbert Basis theorem) If $I \subset K\left[x_{1}, \cdots, x_{n}\right]$ is an ideal, then we can find $f_{1}, \cdots, f_{s} \in K\left[x_{1}, \cdots, x_{n}\right]$ such that $I=$ $\left\langle f_{1}, \cdots, f_{s}\right\rangle$.

This asserts that every $\mathbf{V}(I)$ can be written in the form $\mathbf{V}\left(f_{1}, \cdots, f_{s}\right)$.
Definition $3.11\langle L T(I)\rangle$ is called the adeal of leading terms which is generated by the leading terms $L T(f)$ for all $f \in I \backslash\{0\}$.

An important observation is that if $I=\left\langle f_{1}, \cdots, f_{s}\right\rangle$, then

$$
\left\langle L T\left(f_{1}\right), \cdots, L T\left(f_{s}\right)\right\rangle \subset\langle L T(I)\rangle
$$

but equality need not occur. A Gröbner basis occurs when we get equality $\left\langle L T\left(f_{1}\right), \cdots, L T\left(f_{s}\right)\right\rangle=\langle L T(I)\rangle$.

Example 3.12 If $f_{1}=x^{3}-2 x y$ and $f_{2}=x^{2} y-x-2 y^{2}$, then $x^{2}=y\left(x^{3}-2 x y\right)-x\left(x^{2} y-x-2 y^{2}\right)=y f_{1}-x f_{2} \in\left\langle f_{1}, f_{2}\right\rangle$. Using lex order with $x>y$, we have $L T\left(f_{1}\right)=x^{3}$ and $L T\left(f_{2}\right)=x^{2} y$. Since $L T\left(x^{2}\right)=x^{2} \notin\left\langle x^{3}, x^{2} y\right\rangle=\left\langle L T\left(f_{1}\right), L T\left(f_{2}\right)\right\rangle$, we see that the ideal of leading terms can be strictly larger than the ideal generated by the leading terms of the generators.

Definition 3.13 Given a monomial order $>$ and an ideal $I \subset$ $K\left[x_{1}, \cdots, x_{n}\right]$, we say that $\left\{g_{1}, \cdots, g_{t}\right\} \subset I$ is a Gröbner basıs of I if

$$
\left\langle L T\left(g_{1}\right), \cdots, L T\left(g_{t}\right)\right\rangle=\langle L T(I)\rangle .
$$

More concretely, $\left\{g_{1}, \cdots, g_{t}\right\} \subset I$ is a Gröbner basss if the leading term of every nonzero element of I is divisible by some $L T\left(g_{i}\right)$.

Theorem 3 14[1]. Fix a monomal order $>$ on $K\left[x_{1}, \cdots, x_{n}\right]$ and let $I \subset K\left[x_{1}, \cdots, x_{n}\right]$ be an ideal. Then I has a Gröbner basis, and furthermore, any Gröbner basss of I is a basis of I.

Proposition 3 15[1] If g_{1}, \cdots, g_{t} is a Gröbner basis for I and $f \in K\left[x_{1}, \cdots, x_{n}\right]$, then f can be written uniquely in the form $f=g+r$, where $g \in I$ and no term of r is divisuble by any $L T\left(g_{i}\right)$.

This proposition implies that the remainder on division by a Gröbner basis is unique. If we let $G=\left\{g_{1}, \cdots, g_{t}\right\}$ be the Gröbner basis, then the remainder of f on division by G will be denoted $r=\bar{f}^{G}$.

From now, we compute Gröbner bases. Buchberger (see D. A. Cox [1]) provided algorithms for determining whether a given basis of an ideal is a Gröbner basis and computing Gröbner bases. The key tool is the S-polynomial of $f_{1}, f_{2} \in K\left[x_{1}, \cdots, x_{n}\right]$, which is defined to be

$$
S\left(f_{1}, f_{2}\right)=\frac{x^{\gamma}}{L T\left(f_{1}\right)} f_{1}-\frac{x^{\gamma}}{L T\left(f_{2}\right)} f_{2},
$$

where $x^{\gamma}=L C M\left(L M\left(f_{1}\right), L M\left(f_{2}\right)\right)$ and $L M\left(f_{i}\right)$ is the leading monomial of f_{2} (the leading term with the coefficient removed). The basic idea of S-polynomial is that it is the simplest combination of f_{1} and f_{2} which cancels leading terms. We recall the Buchberger's criterion. A basis $\left\{g_{v}, \ldots, g_{t}\right\} \subset I$ is a Gröbner basis of I if and only if for all $i<j$, we have $\overline{S\left(g_{i}, g_{j}\right)}{ }^{G}=0$. Here, $\overline{S\left(g_{i}, g_{j}\right)}{ }^{G}$ denotes the remainder of $S\left(g_{2}, g_{j}\right)$ on division by G.

Example 316 Let $F=\left\{f_{1}, f_{2}\right\}=\left\{x^{3}-2 x y, x^{2} y-x-2 y^{2}\right\}$. We know $\overline{S\left(f_{1}, f_{2}\right)}{ }^{F}=x^{2}=f_{3}$, so that setting $F_{1}=\left\{f_{1}, f_{2}, f_{3}\right\}$, we compute :

$$
\begin{aligned}
& \frac{-}{S\left(f_{1}, f_{2}\right)^{F_{1}}}=0, \\
& \overline{S\left(f_{1}, f_{3}\right)^{F_{1}}}=-2 x y=f_{4}, \\
& \overline{S\left(f_{2}, f_{3}\right)^{F_{1}}}=-x-2 y^{2}=f_{5} .
\end{aligned}
$$

Adding the nonzero remainders to F_{1} gives $F_{2}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$, and then we compute:

$$
\begin{aligned}
& \overline{S\left(f_{1}, f_{5}\right)}{ }^{F_{2}}=-4 y^{3} \\
& \left.\overline{S\left(f_{4}, f_{5}\right.}\right)^{F_{2}}=-2 y^{3}, \\
& {\overline{S\left(f_{2}, \bar{f}_{3}\right)}{ }^{F_{2}}=0 \quad \text { for all other } i<j}^{2} .
\end{aligned}
$$

It suffices to add $f_{6}=y^{3}$ to F_{2}, giving $F_{3}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$. This time we get $\overline{S\left(f_{i}, f_{j}\right)}{ }^{F_{3}}=0,1 \leq i, j \leq 6$, so that a Gröbner basis of $\left\langle x^{3}-2 x y, x^{2} y-x-2 y^{2}\right\rangle$ for lex order with $x>y$ is $F_{3}=$ $\left\{x^{3}-2 x y, x^{2} y-x-2 y^{2}, x^{2},-2 x y,-x-2 y^{2}, y^{3}\right\}$.

References

[1] D A Cox, Introduction to Gröbner bases, Proceedings of Symposia in Appiied Math 53 (1998), 1-24
[2] PJ Hilton and U Stammbach, A course in homological algebra, SprıngerVerlag, New York, Heidelberg, Berlin, 1971.
[3] T W. Hungerford, Algebra, Springer-Verlag, New York, 1974
[4] M Kashiwara, On the maximally ovendetermined system of linear differential equations, Publ RIMS, Kyoto Univ. 10 (1975), 563-579.
[5] S. Tajima and Y Nakamura, Residue calculus and Horowntz's algorithm for ratronal functoon with differential equatoon, (in japanese), Sûrikaisekı Kenky ûshoı Kôkyûroku, RIMS Kyoto Univ 1038 (1998), 23-30.
[6] S Tajima and Y. Nakamura, Resudue calculus wnth differentıal operator, Sûrıkaisekı Kenky ûshoı Kôkyûroku, Kyushu J. of Math. 54-1 (2000), 127-138.
[7] S Tajıma and Y Nakamura, Localizatzon of an algortthm for computing the nesudue using \mathcal{D}-module, (in japanese), to appear
[8] N. Takayama, Gröbner basis and the problem of contiguous relations, Japan J Math 6 (1989), 147-160

Department of Mathematics
College of Natural Sciences
Pusan National University
Pusan 609-735, Korea
E-maal: khshon@hyowon.pusan.ac.kr

[^0]: Received March 11, 2001 Revised October 9, 2001
 2000 Mathematics Subject Classification 32C38, 13P10, 13N10, 35 A 27
 Key words and phrases. algebraic local cohomology group, sheaf of meromorphic function, Gröbner basis

 This work was supported by KOSEF, 2000, Project No. 2000-6-101-01-2

