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PROPERTIES OF THE FIRST ALGEBRAIC LOCAL
COHOMOLOGY GROUP AND GROBNER BASIS

C J Kang,J AKmM, H Y MoonN anp K. H. SHON

1. Introduction

In this paper, we study some properties of the first algebraic local
cohomology groups and Grobmner basis for residue calculus based on
the papers 8. Tajima [6,7]. ¥or a given meromorphic fuction u(z), we
can treat the principal part m of u(z) as an element of the algebraic
local cohomology group ’H,[lA](Ox) by setting m = u(z) mod Ox where
Ox is the sheaf of holomorphic functions. Since ¢(z) is holomorphic
in X, it suffices to consider m = u(z) mod Ox instead of u(z) when
we compute the residue of ¢(2)u(z)dz. S. Tajima and Y. Nakamura [5]
investigated the residue calculus and Horowitz’s algorithm for rational
function with differential equation.

We investigate some properties of modules, extension groups and
the algebraic local cohomology and introduce a Grobner basis that is
very useful for computing the residues.

2. Preliminaries

We introduce some tools from the theory of extension group induced
by homomorphism theories: modules, extension groups, the first alge-
braic local cohomology group and Grébner basis.
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THEOREM 2.1(3] Every free module F over a ming A with dentity
i§ projectie.

Let A be a ring and A, B be A-modules. We let
Homy(A, B) := {g|¢ : A — B is a A-module homomorphism}.

THEOREM 2 2[2). (1) Let 0 — B’ %5 B —5 B” be an ez-
act sequence of A-modules. For every A-module A, the induced se-
quence 0 — Homyp(A,B') £5% Homa(A,B) = Homp(A; B") is
exact.

(2) Let A £5 A =5 A" — 0 be an ezact sequence of A-modules.
For every A-module B, the induced sequence 0 — Homp(A”, B) —

Homa(A, B) LN Homp(A’, B) is ezact.

DEFINITION 2.3 A short exact sequence 0 — R -*5 P 3 A —

0 of A-modules with P projective is called a projective presentation of
A.

DEFINITION 2.4 To the A-modules A, B and to the projective pre-
sentation of 4 given in the Definition 2.4, we can associate the abelian
group

Extp(A, B) = coker(u* : Homy (P, B) — Hom (R, B)},
= Homa(R, B)/Imy*.

Now, we deduce two exact sequences connecting Hom and Ext.

THEOREM 2 5{2). Let A be a A-module and let 0 —» B' 25 B -5
B" —— 0 be a short exact sequence of A-modules. Then there exists a
“connecting homomorphism” w : Homp(A, B") — Exts(A, B) such
that the follounng sequence is ezxact :

0 — Homa(A, B’) — Homy(A, B) RLN Homa(A, B")
5 Bxtp(A,B) £ BExty(A, B) > Bxtp(A, BY).
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DEFINITION 2 6 (1) A graded A-module A (graded by the integers)
is a family of A-modules A = {A,}, n€ Z.

(2) If A, B are graded A-modules (ie. A = {A,}, B = {B,},
n € Z), a morphism ¢ : A — B of degree k is a family of A-module
homomorphisms {¢, : A, = Bnik},n € Z.

The category so defined is denoted by %, a graded (left) module.

DEFINITION 2 7 A cochain complex C = {Cy,d,} is an object in

9M% together with an endomorphism & : C — C of degree +1 with
86 = 0.

DEFINITION 2 8 A cocham map ¢ : C — D is a morphism ot degree
0 in 9% such that @8 = ¢ where 8 is coboundary operator in D. Thus
@ is a fa,mlly {¢™ : C™ = D"}, n € Z of homomorphisms such that the
diagram

o _{,"_) on+l
'p"l J’w““
p» —— D

. . sn
18 commutative.

DEFINITION 2 10 Given a cochain complex C = {C™,§"}, we de-
fine its cohomology module H(C) = {H™(C)} by

H™(C) = keré™/Imé"™*, neclZ.

If A = Z, H(C) is called the cohomology group of C. A cochain

map ¢ : € — D induces a morphism of graded modules H{p) = ¢
H(C) — H(D).

3. Algebraic local cohomology group and Grébner basis

In this section, we use the ideas and the results of M. Kashiwara [4]
and N. Takayama [8].
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THEOREM 3 1. Using the above notations, we have

HY(C) = Homy(A, B),
HY(C) = Exta(A, B),
H*(C)=0, n#0,L.

PRrROOF. We have H%(C) = ker §° / Im 6! = ker p*. Since 0 —

Hom (A, B) LN Homy(P, B) £5 Hom (R, B) is exact, from D. A.
Cox [1], ker u* = Im&* =2 Hom(A, B). Hence HY(C) =2 Hom(A, B).
On the other hand, HY(C) = ker ' / Im 6° = C* / Im §° =
Homa(R,B) / Im p* = Exta(A, B) from Definition 2.5.

THEOREM 3 2 [f0— A 5B ¥ C —> 015 an ezact sequence
of cochain complezes, then the sequence

S HYA) S B B) LS B YD B (A) — -

is ezact.

PROOF From the exact sequence 0 — A -+ B 2yc— 0, we

have a morphism of degree +1 of graded modules w : H(C) - H(A)
such that the diagram

H(A) —2 H(B)

I

H(C)

is exact, from the result of P. J. Hilton and U. Stammbach {2|. This
implies that the long sequence is exact.

DEFINITION 3.3. Let X be a simply connected domain in the com-
plex plane C, Ox be the sheaf on X of holomorphic functions. Let
A ={ay,a3,...a,} C X and J4 is the ideal generated by []}.., (z—a;)
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in Ox. Put A; = {o,}, 7 =1,2,--.n. The first algebraic local coho-

mology group with support in A is defined as the inductive limit of
extension groups

Hiq(Ox) = lim Exty  (Ox /3y, Ox).

t—o0

The extension group and the algebraic local cohomology group can
be explained as follows. We have a short exact sequence :
By Theorem 2.6(2), we have a long exact sequence :

LEMMA 34 For an exact sequence
0 ——)3‘,4] — Ox —> OX/JQJ — 0,

we have Homox(ox/flf,i:,@x) = 0, Homo,(Ox,0x) = Ox and
gxté)x(OX,Ox) = 0.

PROOF. We have an exact sequence 0 — Homoy (Ox /3y ,Ox)
— ’Homox (Ox,@x) — %Omox(le’,OX) — 8$t]bx (Ox/:(zA’,Ox)
-— 83)th (Ox,0x) — €mt1@x (D'IA’,Ox).

For ¢ € ?{omox(Ox/ﬁ‘f,iJ,Ox) and ¢(1) = f € Ox, since (z —
aj)t € 3y , we have (¢~ a;)' =0 in Ox /3 from S. Tayma and Y.
Nakamura [6]. Since ¢ is an Ox-module homomorphism, 0 = ¢((x —
o)) = (z — a;)!¢(1) = (z — a;)!f. Thus f = ¢(1) = 0 and for any
g€ Ox/ JLAJ ,&(g) = g¢(1) = 0. Hence ¢ is zero homomorphism.

(2) If we define a map F: Homg, (Ox,Ox) =+ Ox by F(¢) = &(1)
where ¢ € Homo, (Ox,0Ox), then F is an isomorphism.

{3) Let A = Ox be the sheaf of rings. Then Ox is an Ox-module.
Since Oy is a free module, by T. W. Hungerford [3], Ox is a projective
module. By P. J. Hilton and U. Stammbach (2], £zt (Ox,0x) = 0.

From Lemma 3.4, we get the following exact sequence :

0 — Ox — Homo, (34 ,0x) — Eaty (Ox/34,,0x) — 0.
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This implies the following isomorphism :
Exty, (Ox [3Y,,0x) = Homo, (T4, Ox)/Ox.

Since Home ('3{4], Ox) can be understood as the sheaf of meromor-

phic functions with poles of order at most I at A,, by Definition 2.8,
we have

Hig)(Ox) = Ox (x4)/Ox,

where Ox (xA) is the sheaf of meromorphic functions on X with poles
at most at A.

Let Dx be the sheaf of rings on X of linear differential operators
of finite order with holomorphic coefficients. This means that if U
is an open set in X, a section in Dx(U) is a differential operator
D = Y7 ooy(2)Z;, where aj(z) € Ox(U). Then Dx is coherent
as a sheaf of rings.

THEOREM 3.5 (1) H],(Ox) is a coherent left Dx -module.

(2) The first algebraic local cohomology group with support at a single
point is simple as Dy -module.

PROOF. (1) Let P = 3, a;j(z) 25 € Dx and [r] = r mod Ox €
Hiy(Ox) where r € Ox(xA). Define a map Dx x H{4(Ox) —
Hiy)(Ox) by (P,[r]) = [Pr]. Since Pr € Ox (xA), [Pr] € Ox (x4)/Ox
= HEIA] (Ox) from S. Tajima and Y. Nakamura [6]. Thus #},(Ox) is
a left Dx-module.

(2) Let 8 = [;25-] € H{, (Ox). Then & generates H}, (Ox). Let

Z—

N C Hj, ,(Ox) be an ideal as Dx-module with N # {0} and let

n 9 z—a, )" !
n(# 0) € N. Then = Zkzl[@_—(’;ﬁg], Cr,c€Candd= L——C’:)—-—n €
Dx7. Thus Dxq = Dxé = HL, |(Ox). Since Hl, |(Ox) D N O
Dxn= H{l%l(ox), N = 'H[IQJ](OX). Hence ?{[1%](0;() is simple.

Now, we introduce Grobner basis which is useful not only for com-
puting residues but for solving other problems such as solving a system
of polynomial equations, etc.
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One of the simplest monomial orders is lemcographic(lex for short),
which is defined by

a a b b —
TP TG ey XY T & ay > by, or ap = by and ay > by, ete.

DEFINITION 36 If f = Y 4 cax® € Klz1,-* ,Tn), € € K and >
is a monomial order, then a term of f is c,z® for ¢, 7# 0 and the leading

term of f is LT(f) = maz>{cax® | ca # 0} where maz. means the
maximum with respect to >.

THEOREM 3 8 (THE GENERAL DIVISION ALGORITHM) We assume
that @ monomial order > on Kizy, - ,%a| 15 given. If we dwide

f €Kiz, ,zn] by fi, -+, fs € Klzy,...,2,], we can look for an
expression of the form

f=qfi+-t+qfstr

where the remainder r should satisfy that no term of r 18 dunsible by any
of LT(f1), -+ ,LT(fs). Furthermore, LT(f) > LT(q.f.), 1<i<s.

The algorithm gives different remainders by changing the order of

flv"' afs-

DEFINITION 3 9. Let f1,---,f, € Kz, - ,zn].

(L) {(fr, oy =3 hufo | bu € K[z, , 5]} is the deal gen-
erated by fi,---, f,.

(2) V(fi,--- . fs) ={p € K" | filp) = --- = fs(p) =0} C K™ is
called the affine variety.

(3) Given any ideal I C Klzy,--- ,2y|, we define V(I) = {p €
K™ | flp)=0forall feI} C K"

THEOREM 3 10 (HILBERT Basis THEOREM) If I C Klz1, -« ,Zn]
28 an ideal, then we can find fi,-++, fs € K[z1, -+ ,Tn) such that I =

<f1,' "t afs)-
This asserts that every V(I) can be written in the form V(fy,- - , fa).

DEFINITION 3.11  (LT(I)) is called the 1deal of leading terms which
is generated by the leading terms LT(f) for all f € I\{0}.
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An important observation is that if I = {f,---, fs}, then

but equality need not occur. A Groébner basis occurs when we get
equality (LT(f), - ,LT(fs)) = (LT(I)).

EXAMPLE 3.12 If fi = 2% — 2zy and fo = 2%y — = — 2¢%, then
z? = y(z® - 2zy) — 2(@®y — = — ) = yfi —af2 € (f1, f2). Using
lex order with x > ¥, we have LT(f1) = 2° and LT(f;) = #%y. Since
LT(z?) = 2? ¢ (z®,2%y) = (LT(f1), LT(f2)), we see that the ideal of
leading terms can be strictly larger than the ideal generated by the
leading terms of the generators.

DEFINITION 3.13 Given a monomial order > and an ideal I C
Klzy, -+ ,z,|, we say that {g1,--- ,g:} C I is a Grébner basis of I if

(LT(g),- -+ , LT(ge)) = (LT(I))-

More concretely, {91, -+ ,g:} C I is a Grébner basis if the leading term
of every nonzero element of I is divisible by some LT(g;).

THEOREM 3 14{1]. Fiz a monomial order > on K(z1,- - ,z,| and
let I C Klzy, -+ ,z,) be an ideal. Then I has a Grébner basis, and
furthermore, any Grébner basis of I is a basis of I.

PRrRoPOSITION 3 15[1] If g1,-- ,9: 15 a Gribner basis for I and
fe Kz, - ,xn], then f can be written uniquely in the form f = g+,
where g € I and no term of v is dimsible by any LT{g;).

This proposition implies that the remainder on division by a Grébner
basis is unique. If we let G = {g;,--- ,g;} be the Grobner basis, then
the remainder of f on division by G will be denoted » = f€.

From now, we compute Grobner bases. Buchberger (see D. A. Cox
{1]) provided algorithms for determining whether a given basis of an
ideal is a Grobner basis and computing Grobner bases. The key tool
is the S-polynomial of f\, fo € K|z,,--- ,x,], which is defined to be

Y x
S fa) = LT(fl)f1 B LT(J%)fz1
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where 7 = LOCM(LM(f,), LM(f2)) and LM(f;) is the leading mono-
mial of f, (the leading term with the coefficient removed). The basic
idea of S-polynomial is that it is the simplest combination of f; and
fo which cancels leading terms. We recall the Buchberger’s criterion.
A basis {g,,...,9:} C I is a Grobner basis of I if and only if for all

i < j, we have S(g;,9,)¢ = 0. Here, S(gi,g,)¢ denotes the remainder
of S(g.,9;) on division by G.

EXAMPLE 3 16 Let F = {f, fo} = {z° — 2zy, 2%y — = — 2¢%}.
We know S(f1, f2) = 2® = f3, so that setting Fy = {f1, fa2, fa}, we
compute : -

S(fh f?)FI = 01
S(fi, ) = 2y = fu,

S5(f2, fa)' = —z — 2 = fs.

Adding the nonzero remainders to Fy gives Fo = {f1, fo, f3, fa, s},
and then we compute :

S(fla fﬁ)pz = _43]3,
S(fs, f5)72 = —2¢%,
S’(_;",,,)’,)F2 =0 for all other i < j.

It suffices to add fo = ¢° to I, giving F3 = {f1, f2, f3, fa, f5, f}.
This time we get S(f;, f;)®* = 0, 1 < i,j < 6, so that a Grobner
basis of (x® — 22y, z%y — z — 2y?) for lex order with = > y is F3 =
{$3 - 2.’1}3}, $2y — &= 23}"27 532, —2$’y, - — 2y2, y3} .
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