East Asian Math J 17(2001), No 2, pp 253-264

ON INTEGRAL REPRESENTATION WITH RESPECT TO VECTOR-VALUED FINITELY ADDITIVE MEASURES

DONG HWA KIM AND YOUNGHEE LEE

1. Introduction

In [5], [8], the authors considered the integral representation of bounded linear operators of C(S, X) into Y, where S denotes a compact Hausdorff space, X and Y are Banach spaces, and C(S, X) denotes the Banach space of all X-valued continuous functions defined on S.

It is well-known that an integration theory is to define the integral of a simple function and then extend the integral by some limit process to a general case of functions in [3], [4].

In [5], A. De Korvin and L. Kunes generated the integration theory of scalar-valued functions with respect to operator-valued measures obtained by D. R. Lewis in [6].

The purpose of this paper is to give an integral representation for the case of vector-valued functions with respect to finitely additive measure taking values in locally convex topological vector spaces, using both a weak and a strong approach.

2. Notations and preliminaries

Received March 5, 2001 Revised October 7, 2001

²⁰⁰⁰ Mathematics Subject Classification 46G10, 28B05

Key words and phrases. operator-valued measure, locally convex spaces, semi-variation, μ -integrable, controlled measure, continuous seminorm, strongly μ -integrable.

This research was supported by Kyungnam University Research Foundation, 2000

Let X be a normed space and Y be a locally convex Hausdorff linear topological space generated by the family Q of continuous seminorms on Y. Let X' and Y' be the topological duals of X and Y, respectively. Let (S, \sum) be a measurable space and an operator-valued measure $\mu : \sum \to L(X, Y)$ be an additive set function with

$$\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n), \quad E_n \in \sum \text{ with } \bigcup_{n=1}^{\infty} E_n \in \sum,$$

 $E_i \cap E_j = \emptyset (i \neq j), i, j = 1, 2, \cdots$, the series being unconditionally convergent with respect to the topology of simple convergence. Let us suppose that there exists a vector measure $\nu : \sum \to X$ and let μ be a non-negative real-valued measure on \sum . If $\lim_{\mu(E)\to 0} \nu(E) = 0$, then ν is called μ -continuous and this is denoted by $\nu \ll \mu$. When $\nu \ll \mu, \mu$ is sometimes said to be a control measure for ν .

It is well-known in [1] that if $\mu : \sum \to L(X, Y)$ is an operatormeasure, then the set function $\mu_x : \sum \to Y$, defined by $\mu_x(E) = \mu(E)x$ is a vector measure and conversely, if $\mu(\cdot)x$ is a vector measure, then $\mu : \sum \to L(X, Y)$ is countably additive with respect to the topology of simple convergence in L(X, Y). From the above result it can be proved that the set function $y'\mu : \sum \to X'$ defined by $(y'\mu)(E)x = y'(\mu(E)x)$ for $E \in \Sigma$ is an X'-valued measure. If $y' \in Y'$ and $q \in Q$, we will write $y' \leq q$ whenever $|y'(y)| \leq q(y)$ for $y \in Y$.

DEFINITION 2.1 ([3]) We define the q-variation of μ , which is a finitely set function on \sum , as

$$|\mu|_q(E) = \sup \sum_{i=1}^n q(\mu(E \cap E_i)), \ E \in \sum,$$

where the supremum is taken over all finite pairwise disjoint sets $E_n \in \sum$. For each $y' \in Y'$, we write the variation of $y'\mu$, $|y'\mu|_q(\cdot)$, as

$$|y'\mu|_q(E) = \sup \sum_{i=1}^n \parallel y'\mu(E \cap E_i) \parallel.$$

DEFINITION 2.2 ([3], [4]). We define the q-semi-variation of μ as

$$\parallel \widehat{\mu} \parallel_q (E) = \sup_{y' \leq q} |y'\mu|_q(E), \quad E \in \sum,$$

which is non-negative. Note that $\| \widehat{\mu} \|_q$ $(E) < 2 \sup_{F \subset E} \| y' \mu(F) \|$ and $\| \widehat{\mu} \|_q$ $(E) < \infty$ whenever $\| y' \mu \|_q$ $(E) < \infty$ for each $y' \in Y'$. It is proved easily that $\| \widehat{\mu} \|_q$ (\cdot) is monotone, subadditive and that $\| \mu|_q(E) \leq \| \widehat{\mu} \|_q$ $(E) \leq 4 \sup_{y' \leq q} \sup_{F \subset E} |y' \mu(F)|$.

We now develop an integration with respect to an operator-valued measure. Recall that in [1], [5] a sequence of functions (f_n) converges to f in semivariation if for every $\epsilon > 0, \delta > 0$ there exists some N such that for $n \ge N$, $\| \hat{\mu} \|_q (\{s : |f_n - f| > \delta\}) < \epsilon$.

3. The weak integrals

Let $\mu : \sum \to L(X, Y)$ be a strongly finite measure with $|y'\mu|_q(E) < \infty$ for $E \in \sum$ and $y' \in Y'$. Also the integrands are assumed to be measurable.

DEFINITION 3.1 A function $f : S \to X$ is said to be a weakly μ -integrable if the following conditions hold.

(1) f is $y'\mu$ -integrable in the sense of [3].

(2) for $E \in \sum$ there exists an element $y_E \in Y$ such that $y'(y_E) = \int_E f dy' \mu$ for every $y' \in Y'$.

If f is μ -integrable, we denote $y_E = \int_E f d\mu$. We write sometimes $\int_E f d\mu$ for $\int_E f(s) d\mu(s)$. It follows from Definition 3.1 that every simple function with representation $f = \sum_{i=1}^n x_i \chi_{E_i} : S \to X$, where χ_{E_i} is the characteristic function of the sets $E_i \in \sum, x_i \in X$ and $E_i \cap E_j = \emptyset$ for $i \neq j, i, j = 1, 2, \cdots, n$, is μ -integrable over E and we define the integral of f as

$$\int_E f d\mu = \sum_{i=1}^n x_i \mu(E \cap E_i) \in X, \quad E \in \sum.$$

It is easily verified that if $f: S \to X$ is a simple function such that $q(f) = \sup q(f(s))$ for every $q \in Q$, $s \in S$, then $q(\int_E f d\mu) \le ||f||_s ||f||_s = \widehat{\mu} ||g||_s \in S$ for $E \in \Sigma$, where $||f||_s = \sup_{s \in S} |f(s)|$.

LEMMA 3.2 If $f: S \to X$ is $y'\mu$ -integrable, then (1) $q(\int_E fd(y'\mu)) \leq \int_E |f|d|y'\mu|$ for $E \in \sum$. (2) the set function defined by $\phi(E) = \int_E fd\mu$ is a measure on \sum .

PROOF. (1) If f is $y'\mu$ -integrable, then |f| is $|y'\mu(\cdot)|$ -integrable. Thus, if (f_n) is a defining sequence of simple functions for $y'\mu$ -integrability of f, then $|f_n|$ is a defining sequence corresponding to the function |f| and

$$qigg(\int_E f_n d(y'\mu)igg) \leq \int_E |f_n| d|y'\mu| \;\; ext{for}\; E\in \sum,$$

which completes the proof.

(2) From [3], p122, Proposition 5, since

$$\sum_{i=1}^{\infty}\int_{E_i}fd(y'\mu)=\int_{\cup_{i=1}^{\infty}}fd(y'\mu),$$

it follows

$$\sum_{i=1}^\infty y'\mu(E_i)=y'\mu(igcup_{i=1}^\infty E_i).$$

Hence μ is countably additive by Pettis theorem.

THEOREM 3.3. Suppose Y is sequentially complete. If there is a sequence (f_n) of simple functions which converges to f on S, and $\int_E fd|y'\mu| = \lim_{n\to\infty} \int_E f_n d|y'\mu|$, then it follows

$$\int_E f d\mu = \lim_{k \to \infty} \int_E f_{n_k} d\mu$$

for a subsequence (f_{n_k}) of (f_n) .

PROOF Since a sequence (f_n) of simple functions converges to f, f_n is a bounded measurable function and $|f_n| \leq |f|$ for $n = 1, 2, \cdots$. For each $\epsilon > 0$, let $F_n = \{s \in S : |f - f_n| > \epsilon\}$ and $E_n = \bigcup_{k=n}^{\infty} F_k$. Then, for every $q \in Q$,

$$\begin{split} q \bigg(\int_E f_n d\mu - \int_E f_m d\mu \bigg) \\ &\leq \sup_{y' \leq q} \int_{E \cap E_n} |f - f_n| d|y'\mu| + \sup_{y' \leq q} \int_{E \cap E_n^c} |f| d|y'\mu| \\ &+ \sup_{y' \leq q} \int_{E \cap E_n^c} |f_n| d|y'\mu| + \sup_{y' \leq q} \int_{E \cap E_m} |f - f_m| d|y'\mu| \\ &+ \sup_{y' \leq q} \int_{E \cap E_m^c} |f| d|y'\mu| + \sup_{y' \leq q} \int_{E \cap E_m^c} |f_m| d|y'\mu| \\ &\leq \epsilon \parallel \widehat{\mu} \parallel_q (E \cap E_n^c) + 2 \parallel \widehat{\mu} \parallel_q (E \cap E_n) \\ &+ \epsilon \parallel \widehat{\mu} \parallel_q (E \cap E_m^c) + 2 \parallel \widehat{\mu} \parallel_q (E \cap E_m) \end{split}$$

for $E \in \Sigma$, which shows that $(\int_E f_n d(y'\mu))$ is Cauchy uniformly with respect to $E \in \Sigma$ and since Y is sequentially complete, there is an element y_E in Y such that $y'(y_E) = y'(\lim_{n\to\infty} \int_E f_n d\mu) = \int_E f d(y'\mu)$. Hence f is μ -integrable.

Let f be $|y'\mu|$ -integrable, that is, there exists a sequence (f_n) of simple functions such that $\lim_{n\to\infty} \int_E |f_n - f| d|y'\mu| = 0$. Then

$$\sup_{oldsymbol{y}'\leq q}\int_E |f|d|y'\mu|\leq \sup_{oldsymbol{y}'\leq q}\int_E |f-f_n|d|y'\mu|+ \sup_{oldsymbol{y}'\leq q}\int_E |f_n||d(y'\mu)| \leq \infty\,,$$

which implies that f is μ -integrable. For each k there exists a n_k such that

$$\sup_{y'\leq q}\int_E |f-f_{n_k}|d|y'\mu|<\frac{1}{k}.$$

Let $x_{k,E} = \int_E f_{n_k} d\mu$ for $E \in \sum$. Then for $q \in Q$, $q(x_{n,E} - x_{m,E}) = q \left(\int_E (f_{n_k} - f_{m_k}) d\mu \right)$ $= \sup_{y' \leq q} |y' \int_E (f_{n_k} - f_{m_k}) d\mu|$ $\leq \sup_{y' \leq q} \int_E |f_{n_k} - f_{m_k}| d|y'\mu|.$

Thus $x_{k,E}$ is Cauchy uniformly in Y, and therefore it converges. Since Y is sequentially complete, there exists an element $y_E \in Y$ such that $y_E = \lim_{k\to\infty} x_{k,E}$.

Then we show that for every $y' \in Y'$, $y'(y_E) = \int_E f d(y'\mu)$. In fact

$$egin{aligned} |y'(x_{k,E}) - \int_E f d(y'\mu)| &= \left|\int_E (f_{n_k} - f) d(y'\mu)
ight| \ &\leq \sup_{y'\leq q} \int_E |f_{n_k} - f| d|y'\mu| \ & o 0 \quad ext{as } k o \infty, \end{aligned}$$

and since $y'(y_E) = \lim_{k \to \infty} y'(x_{k,E})$, the assertion is proved. Hence f is μ -integrable and we have proven that

$$\int_E f d\mu = \lim_{k o \infty} \int_E f_{n_k} d\mu \quad ext{for } E \in \sum d\mu.$$

THEOREM 3.4 (1) Let (f_n) be a sequence of μ -integrable function which converges to f a.e on S with respect to μ ,

(2) let $|f_n| \leq g$ for each n and $g : S \rightarrow X$ be a $y'\mu$ -integrable function,

(3) for every $\epsilon > 0$ there exists $\delta > 0$ such that $\| \widehat{\mu} \|_{q} (E) < \delta$ implies

$$\left|\int_E gd(y'\mu)\right| < \epsilon \quad for \ y' \in \ \sigma'.$$

Then f is μ -integrable whenever Y is sequentially complete and $\int_E f d\mu = \lim_{n \to \infty} \int_E f_n d\mu$ uniformly for $E \in \sum$.

PROOF We first show that $(\int_E f_n d\mu)$ is Cauchy uniformly with respect to $E \in \sum$. For given $\epsilon > 0$, let $\phi(E) = \int_E g d\mu$, $F_n = \{s \in S : |f - f_n| > \epsilon\}$ and $E_n = \bigcup_{k=n}^{\infty} F_k$. Then (E_n) is a decreasing sequence of set $E_n \searrow \emptyset$.

By applying the dominated convergence theorem for operator-valued measure, f is $y'\mu$ -integrable and for each n, we see that f is $y'\mu$ -integrable and $\int_E fd(y'\mu) = \lim_{n\to\infty} \int_E f_n d(y'\mu)$.

Now for $q \in \tilde{Q}$,

$$\begin{split} \left| \int_{E} (f - f_{n}) d(y'\mu) \right| \\ &\leq \sup_{y' \leq q} \left| \int_{E \cap E_{n}^{c}} (f - f_{n}) d(y'\mu) \right| + \sup_{y' \leq q} \left| \int_{E \cap E_{n}} (f - f_{n}) d(y'\mu) \right| \\ &\leq \epsilon \parallel \widehat{\mu} \parallel_{q} (E \cap E_{n}^{c}) + 2 \sup_{y' \leq q} \int_{E \cap E_{n}} \parallel g \parallel d|y'\mu| \\ &= \epsilon \parallel \widehat{\mu} \parallel_{q} (S) + 2 \parallel \phi \parallel_{q} (E_{n}). \end{split}$$

Thus,

$$\begin{split} q \bigg(\int_E f_n d\mu - \int_E f_m d\mu \bigg) \\ &\leq 2\epsilon \parallel \widehat{\mu} \parallel_q (S) + 2 \sup_{y' \leq q} \int_{E \cap E_n} |g| d|y'\mu| + 2 \sup_{y' \leq q} \int_{E \cap E_m} |g| d|y'\mu| \\ &< 2\epsilon \parallel \widehat{\mu} \parallel_q (S) + 2 \parallel \phi \parallel_q (E_n) + 2 \parallel \phi \parallel_q (E_m), \end{split}$$

for all n, m and $E \in \sum$. So the sequence $(\int_E f_n d\mu)$ is Cauchy uniformly with respect to $E \in \sum$. Since Y is sequentially complete, there is an element y_E in Y such that $y'(y_E) = y'(\lim_{n\to\infty} \int_E f_n d\mu) = \int_E f d(y'\mu)$ for $E \in \sum$. Hence f is μ -integrable and $\lim_{n\to\infty} \int_E f_n d\mu = \int_E f d\mu$.

DEFINITION 3.5 ([2]). A function $f : S \to X$ is said to be μ integrable if there exists an X-valued sequence (f_n) of simple functions such that

(1) $f_n \to f \mu$ -a.e.,

(2) given $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that $\| \mu \|_q (E) < \delta$ for $E \in \sum \text{ implies } q(\int_E f_n d\mu) < \epsilon \text{ for all } n \in N.$

THEOREM 3.6. Let $\| \hat{\mu} \|_q$ be finite and $f_n \to f \mu$ -a.e.. Let $g: S \to X$ be y' μ -integrable such that $|f_n| \leq g$, $n = 1, 2, \dots, |f_n - g| \leq M$, $|f - g| \leq M$ for some constant M. If f is y' μ -integrable, then $\int_E f_n d(y'\mu)$ converges to $\int_E f d(y'\mu)$ uniformly for $y' \in Y'$, $E \in \sum$. If Y is sequentially complete, then f is μ -integrable.

PROOF. Let
$$E_n = \bigcup_{n=1}^{\infty} \left\{ s \in S : |f_n - f| \ge \frac{\epsilon}{4 \|\widehat{\mu}\|_q(S)} \right\}$$
. Then (E_n)

is a decreasing sequence of sets with $E_n \searrow \emptyset$ and so, given $\epsilon > 0$, there exits a positive integer $N = N(\epsilon)$ such that $\| \hat{\mu} \|_q (E_n) < \frac{\epsilon}{8M}$ for all $n \ge N$ and all $s \in S \cap E_n$ and $q(f_n - f) \to 0$ uniformly on $S \cap E_n^c$. Then

$$\begin{split} \left| \int_{E} (f - f_n) d(y'\mu) \right| &\leq \left| \int_{E \cap E_n^c} (f - f_n) d(y'\mu) \right| + \left| \int_{E \cap E_n} (f - f_n) d(y'\mu) \right| \\ &\leq \frac{\epsilon}{4 \parallel \widehat{\mu} \parallel_q (S)} (E \cap E_n^c) + 2M \parallel \widehat{\mu} \parallel_q (E_n) \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}. \end{split}$$

Since $\| \widehat{\mu} \|_q (E_n) \to 0$ as $n \to \infty$, we see that $q(\int_E (f - f_n) d(y'\mu))$ converges to 0 uniformly for $y' \in Y'$ and $E \in \sum$.

Thus now for given $\epsilon > 0$,

$$q\left(\int_{E} f_n d(y'\mu) - \int_{E} f_m d(y'\mu)\right)$$

< $\epsilon(\parallel \widehat{\mu} \parallel_q (E \cap E_n^c) + 2M) + \epsilon(\parallel \widehat{\mu} \parallel_q (E \cap E_m^c) + 2M),$

for all $n, m \ge N$ and $E \in \sum_{n \le 1} \sum_{k \le$

So the sequence $(\int_E f_n d\mu)$ is Cauchy uniformly with respect to $E \in \sum$.

By applying the dominated convergence theorem, we see that f is $y'\mu$ -integrable and

$$\lim_{n\to\infty}\int_E f_n d(y'\mu) = \int_E f d(y'\mu) \quad \text{for } E \in \sum .$$

Since Y is sequentially complete, there exists an element y_E in Y such that $y'(y_E) = y'(\lim_{n\to\infty} \int_E f_n d\mu) = \int_E f d(y'\mu)$. Hence f is μ -integrable and $\int_E f d\mu = \lim_{n\to\infty} \int_E f_n d\mu$.

4. The strong integrals

In this section we shall assume that μ is strongly bounded, that is, for every sequence of pairwise disjoint sets (A_n) in \sum , $\lim_{n\to\infty} \mu(A_n) = 0$. Then every $\| \mu \|_q$ is strongly bounded for $q \in Q$.

To prove this, note that

$$\| \mu \|_{q} (A) = \sup_{\substack{y' \leq q \\ y' \leq q}} |y'\mu|(A)$$

= $\sup_{\substack{y' \leq q \\ B \subset A}} \{ \sup_{B \subset A} (y'\mu(B) + y'\mu(A - B)) \}$
= $\sup_{B \subset A} \sup_{y' \leq q} \{ q(\mu(B)) + q(\mu(A - B)) \}$
 $\leq \sup_{B \subset A} \{ q(\mu(B)) + q(\mu(A - B)) \}$
 $\leq 2 \sup_{B \subset A} q(\mu(B)).$

If (A_n) is a sequence of pairwise disjoint sets in \sum , and assume, by contradiction, that there exists $q' \in Q$ such that $\|\mu\|_{q'}(A_n) \not\to 0$, then there exists $\epsilon_0 > 0$ such that for all k there is an $n_k > k, k \in N$ with $\sup_{A_{n_k} \subset A_n} q'\mu(A_{n_k}) > \epsilon_0$; thus, for every k there exists $B_{n_k} \subset A_{n_k}$ such that $q'(\mu(B_{n_k})) > \sup_{A_{n_k} \subset A_n} q'(\mu(A_{n_k})) - \frac{\epsilon_0}{2} > \frac{\epsilon_0}{2}$.

Since the A_{n_k} 's are pairwise disjoint, so are the B_{n_k} 's, but cannot be $\mu(B_{n_k}) \to 0$, which is contradiction.

DEFINITION 4.1. For any simple function $f = \sum_{i=1}^{n} x_i \chi_{E_i}$ and for $E \in \sum$ we define $\int_E f d\mu = \sum_{i=1}^{n} x_i \mu(E \cap E_i)$; a function $f: S \to X$ is said to be strongly μ -integrable if there exists a sequence (f_n) of simple functions such that

- (1) for every $\epsilon > 0$ and $q \in Q$, $\|\widehat{\mu}\|_q (\{|f f_n| > \epsilon\}) \to 0$,
- (2) the sequence $(\int_E f_n d\mu)$ converges in Y.

Then we put

$$(s) - \int_E f d\mu = \lim_{n \to \infty} \int_E f_n d\mu, \quad E \in \sum$$
 (*)

Note that, trivially, if f is simple, the μ -integrable and the strong μ -integrable coincide.

THEOREM 4.2. Let (f_n) and (g_n) be defining sequences for f such that they both satisfy (1) and (2) of Definition 4.1, then

(1) $\lim_{n\to\infty} \int_E f_n d\mu = \lim_{n\to\infty} \int_E g_n d\mu$

(2) $\lim_{n\to\infty} \int_E f_n d\mu = (s) - \int_E f d\mu$ is uniform with respect to $E \in \sum_{i=1}^{n} \int_E f_n d\mu = (s) - \int_E f d\mu$ is uniform with respect to $E \in \sum_{i=1}^{n} \int_E f_n d\mu = (s) - \int_E f d\mu$ is uniform with respect to $E \in \sum_{i=1}^{n} \int_E f_n d\mu = (s) - \int_E f d\mu$ is uniform with respect to $E \in \sum_{i=1}^{n} \int_E f_n d\mu = (s) - \int_E f d\mu$ is uniform with respect to $E \in \sum_{i=1}^{n} \int_E f_n d\mu = (s) - \int_E f d\mu$ is uniform with respect to $E \in \sum_{i=1}^{n} \int_E f_n d\mu = (s) - \int_E f d\mu$.

 $\begin{array}{l} \overset{\sum}{(3)} (s) - \int_{S} f d\mu \ll \mu \ in \ the \ sense \ of \ the } \| \cdot \|_{q} \text{-variation for \ every} \\ q \in Q. \end{array}$

PROOF. Let $h_n = g_n - f_n$. It is evident that (h_n) converges to 0 in $|| \cdot ||_q$ -variation for every $q \in Q$. Also there exists $y_E = \lim_{n \to \infty} \int_E h_n d\mu$ for $E \in \sum$. Let $\epsilon > 0$ be fixed, and define $A_n = \{s \in S : |h_n| > \epsilon\}$ and $B_n = \bigcup_{n=k}^{\infty} A_k$. So for $y' \in Y'$ there exists a positive integer n_0 such that $|y'\mu|(B_n) < \epsilon$ for all $n \ge n_0$. Since h_n 's are simple, they are bounded, say $|h_n| \le M_n$, where $M_n = \sup_{s \in S} |h_n(s)|$; Then for $E \in \sum$,

$$q\left(\int_{E} h_{n} d\mu\right) \leq q\left(\int_{E \cap A_{n}^{c}} h_{n} d\mu\right) + q\left(\int_{E \cap A_{n}} h_{n} d\mu\right)$$

$$= \sup_{y' \leq q} \int_{E \cap A_{n}^{c}} |h_{n}| d|y'\mu| + \sup_{y' \leq q} \int_{E \cap A_{n}} |h_{n}| d|y'\mu|$$

$$\leq \epsilon \sup_{y' \leq q} |y'\mu| (E \cap A_{n}^{c}) + M_{n}|y'\mu| (E \cap A_{n})$$

$$< \epsilon(||\mu||_{q} (E \cap A_{n}^{c}) + M_{n}) \text{ for } E \in \sum.$$

By Vitali-Hahn-Saks Theorem [3], the $\int_E h_n d\mu$ are $\|\mu\|_q$ -continuous uniformly with respect to n and $\lim_{n\to\infty} \int_{E\cap E_n} f_n d\mu = 0$ for $E \in \sum$. Thus $q(y_E) = 0$; since Y is Hausdorff, and $q \in Q$ is arbitrary, this yields $y_E = 0$. Moreover, in similar way, we can show that if the

262

sequence (f_n) of simple functions converges to f, then for every $q \in Q$, $q(\int_E f_n d\mu) \ll \|\hat{\mu}\|_q$ (E) uniformly with respect to n, that is, for every $q \in Q$, and $\epsilon > 0$ there exists a $\delta > 0$ such that $\|\hat{\mu}\|_q$ (E) $< \delta$ implies that $q(\int_E f_n d\mu) < \epsilon$ for $n = 1, 2, \cdots$, and thus $q[(s) - \int_E f d\mu] < \epsilon$ for $q \in Q$, i.e.,

$$q\left((s) - \int_E f d\mu\right) \ll \parallel \widehat{\mu} \parallel_q (E) \text{ for } q \in Q, \ E \in \sum.$$

So, $q(\int_E f d\mu) \ll ||\mu||_q (E)$ for $n = 1, 2, \cdots$ yields that the limit in (*) is uniform. In fact, since $||\widehat{\mu}||_q (\{|f_n - f| > \epsilon\}) \to 0$ as $n \to \infty$, there exists a $\delta > 0$ such that $||\widehat{\mu}||_q (\{|f_n - f| > \epsilon\} \cap E) < \delta$ for $E \in \sum$, and hence $q[(s) - \int_{\{|f - f_n| > \epsilon\} \cap E} (f_n - f)] < \epsilon$ for $n = 1, 2, \cdots$.

To prove (3), since

$$\begin{split} q\Big((s) - \int_{\{|f_n - f| > \epsilon\} \cap E} (f_n - f) d\mu \Big) \\ &\leq \sup_{y' \leq q} \bigg((s) - \int_S (f_n - f) d\mu \bigg) (\{|f_n - f| > \epsilon\}) \\ &\leq \parallel (s) - \int_S (f_n - f) d\mu \parallel_q (\{|f_n - f| > \epsilon\}) \\ &\leq \epsilon \parallel \widehat{\mu} \parallel_q (S) \end{split}$$

for $E \in \sum$, hence, for $n = 1, 2, \cdots$ and $E \in \sum$,

$$egin{aligned} qigg((s) - \int_E (f_n - f) d\mu igg) &\leq qigg((s) - \int_{\{|f_n - f| > \epsilon\} \cap E} (f_n - f) d\mu igg) \ &+ qigg((s) - \int_{\{|f_n - f| > \epsilon\}^c \cap E} (f_n - f) d\mu igg) \ &< \epsilon + \epsilon \parallel \widehat{\mu} \parallel_q (S). \end{aligned}$$

Finally, since $(s) - \int_{()} f d\mu = \lim_{n \to \infty} \int_{()} f_n d\mu$, and $q(\int_E f_n d\mu)$ is $\| \mu \|_q$ -continuous, uniformly with respect to n, we find that given $\epsilon > 0$ there exists a $\delta > 0$ such that $\| \hat{\mu} \|_q (E) < \delta$ yields $q(\int_E f_n d\mu) < \frac{\epsilon}{2}$, $n = 1, 2, \cdots$ and $q((s) - \int_E f d\mu) < \frac{\epsilon}{2}$; thus if $\sup_{F \subseteq E} q((s) - \int_F f d\mu) < \frac{\epsilon}{2}$, then $\| (s) - \int_E f d\mu \|_q < \epsilon$, and this completes the proof.

References

- [1] C Debieve, Integration of vector-valued functions with respect to vector-valued measures, Rev. Roum Math pures. Appl 7 (1981), no 26
- [2] M.E Ballve and P.J. Guerra, On the Radon-Nikodym theorem for operator valued measures, Sun. Stevin 64 (1990), no 2
- [3] N Dinculeanu, Vector measures, Oxford, Pergamon Press, 1967
- [4] N. Dunford and J. Schwartz, *Linear operators*, Part 1, Interscience, New York, 1958.
- [5] A De Kovin and L Kunes, Some non-weak integrals definded by linear functionals, Quart J Math. (Oxford), 24 95 (1973)
- [6] C Folas and I. Singer, Some remarks on the representation of linear operators in spaces of vector-valued continuous functions, Rev Roum. Math pures et Appl 5 (1960).
- [7] D.R. Lewis, Integration with respect to measure, Pacific J. Math. 33 (1970).
- [8] C. Swartz, Integrability for the Dobrakov integral, Czech Math. J 30 105 (1980).
- C. Swartz, Absolutely summing and dominated operators on spaces of vector valued continuous functions, Trans. Math. Soc. 179 (1973).
- [10] K. Swong, A representation theory of continuous linear maps, Math. Ann 155 (1964)
- [11] M P Ulanov, Vector-valued set functions and the representation of continuous linear mappings, Sibirsk Mat Z 9 (1968)

Department of Mathematics Education Kyungnam University Masan 631- 701, Korea *E-mail*: kdh@kyungnam.ac.kr