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ON THE REALIZATION OF THE
DOUBLE LINK AS A BRANCHED SET

YANGKOK KIM

ABSTRACT We construct a family of 3-manifolds by pairwise 1dentifi-
cations of faces i the boundary of certain polyhedral 3-balls and prove

that all these manifolds are cyclic branched coverings of the 3-sphere
over the double hnk

1. Introduction

A well known result about the realization of closed 3-manifolds says
that any closed 3-manifold can be represented as a branched covering
of some link in the 3-sphere. So if we consider a link in the 3-sphere, we
can construct many classes of closed orientable 3-manifolds by consider-
ing its branched coverings. Indeed the description of closed 3-manifolds
as polyhedral 3-balls, whose finitely many boundary faces are glued
together in pairs, is another standard way to construct 3-manifolds.
Many authors have studied the connections between the face iden-
tification procedure and the representation of closed 3-manifolds as
branched coverings of the 3-sphere. In [9] Helling, Kim, and Mennicke
considered a family of polyhedra yielding closed orientable 3-manifolds
and proved that these manifolds are n-fold cyclic coverings of the 3-
sphere branched over the Whitehead link. More general cases were
handled by A. Cavicchioli and L. Paoluzzi [4]. The trefoil knot, the
figure-eight knot and 5, knot were realized as branched sets of cyclic
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coverings over the 3-sphere in [2], {10] and [12] respectively. In this
paper we consider the double link and links £, 4y for a positive inte-
ger d as shown in Fig. 1, where the index d denotes the number of
half twists. We note that £, 4y are links of two or three components
according as d is even or odd.

b =

Fig. 1 (a) Double link figure | (b) The link L q

We consider an infinite family polyhedral 3-cell P(3,n,k)} with ori-
ented edges for n > 3,k > 2 and construct an infinite family of 3-
manifolds M(3, n, k) by the identification of oppositely oriented bound-
ary faces of P(3,n,k). We prove that M(3,n,k) are cyclic (n/d)-fold
coverings of the 3-sphere branched over £(; 4) where {(n,k) = d by two
methods. One is the technique of cancelling handles on Heegaard di-
agrams. The other one is the combinatorial representation of closed
3-manifolds by a special class of edge-colored graphs, called crystalliza-
tions. Moreover M(3,n, k) are cyclic branched n-fold coverings of the
double link in the 3-sphere, where the branched indices of its compo-
nents are » and n/d, respectively.

2. Construction of a family of 3-manifolds M(3,7n,k)

We construct an infinite family of 3-manifolds M(3, n, k) by pairwise
identification of the 2-faces of a polyhedron P(3,n,k) forn > 3,k > 2,
which is homeomorphic to a 3-ball, whose boundary complex provides
a tessellation of the 2-sphere as shown in Fig. 2. The tessellation
consists of two n-gons in the northern and southern hemispheres, and
2n triangles in the equatorial zone. Then P(3,n,k) has 2n + 2 faces,
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4n edges and 2n vertices.

Fig. 2. P(3,n,k)

We define the boundary cycles of two n gons and 2n triangles as

foliow:
K: AjAy-- A,

K: B\By---B,
F,: AjA, B,
F;: B, x-1B, 1A,
for j = 1,... ,n which are depicted in Fig. 2.
Identify faces of the polyhedron:
K=K

1 S:
L A, =B, 5 for 1<j<n

and for each j =1,...,n,

F, - F,

A, =+ Ak
A1 =By
B, = B, k.

(2) R, :

Consider the oriented edges

z; = (A;, Aj+1) and u, = (B;, 4;).
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Then the identifications (1) and (2) show that each oriented edge u;
has (nﬁj equivalent edges for j = 1,2,... ,n. We now calculate the
Euler characteristic of a cellular complex K, induced by the face iden-

tification of a polyhedron P(3,n,k). We note that there is a rotation
symmetry 7" by

T:A;—+Aj_yand B, —» B,_, for j =1,2,...,n
of the P(3,n,k). Thus it suffices to consider our case in the quotient

space P(3,n,k)/T and (n,k) = 1 in Fig. 3, where N, § are the centers
of two n-gons in P(3,n, k).

A4 RN A

2

F

F

Bl I?. Bo

=

Fig. 3. The quotient space P(3,n,k)/T

Indeed, all edges of two triangles on the equatorial zone except
(A1, B2) are equivalent under the composition action TRT, and all
(N,A,) and (S, B,) are equivalent under the composition action RQR,

where
Q . A1 —)Bl,AQ — BQ,N—")’ S,
R:N->NS-—>S,A - Ay, B — Bo,
and
T:A, - A,A, -+ B,,By = Bs.

This means that a 3-dimensional cellular complex K, has d vertices,
n+d edges, n+1 triangles and one 3-cell and so its Euler characteristic
is X(Kn) =d—(n+d)+(n+1) — 1 = 0. Hence the resulting space
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M(3,n,k) = {K,| is a closed, oriented, compact 3-manifold, due to H.
Seifert and W. Threlfall criterion that a complex, which is formed by

identifying the faces of a polyhedron will be a manifold if and only if
its Euler characteristic equals zero.

3. Realizations of the Double link

We now realize the double link as a branched set of covering spaces
of the 3-sphere.

THEOREM The closed connected orentable 3-manifolds M(3,n, k)
are cyche (n/d)-fold coverings of the 3-sphere branched over a hnk
L(1,q9), where d = (n, k). Furthermore, M(3,n,k) are cyclic branched
n-fold coverings of the double link 1n the 3-sphere, where the branched
indices of its components are n and n/d, respectively.

PROOF The symmetry of P(3,n,k) enables us to consider a partic-
ular case without a loss of generality. The general case can be handled
by the same way. The singular set is the image in the quotient of the
axis of a rotation symmetry 7' and of all the edges (A,, B,) in Fig.
2. Notice that these edges are identified by the gluing groups of ]
edges. The polyhedron P(3,n,k) defines in a natural way a decom-
position of M{(3,n,k)/T" into handles. We note that the 3-handles
are neighborhoods in M(3,n,k)/T of the images of the vertices of
P(3,n,k), the 2-handles are the neighborhoods of the images of its
edges, and the l-handles are the neighborhoods of the images of its
faces. Hence we can express all the information related to the gluing
patterns in a planar graph, called a Heegaard diagram. For a Heegaard
diagram, we take an arc and an orientation on it. The endpoint of this
arc is glued onto another point by the identification of the faces. Then
we have another arc starting at this latter point. We continue this pro-
cedure until we return to the arc at which we started. If there are arcs
without orientation, we pick up one of them and do the same operation
as before. Fig. 4 shows a Heegaard diagram of the identification space
M(3,6,3)/T, where the dotted line denotes the singular axis.
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Eliminate 1-handles X;, X, and X3 with 2-handles «, 3 and 7 re-
spectively.

We then dig a ball along C to reduce the complexity. Glue 1-handle
Y and create 1-handle Y* to get a deformed graph as shown in Fig.
where the broken lines are the singular cores of 2-handles.

Fig. 5.

Then by cancelling 1-handle ¥* with 2-handle § and Reidemeister
moves, we have the link £, 3) as shown in Fig. 6, where all components
have a branching index 2. This gives M(3,6, 3) is a 2-fold covering of
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the 3-sphere branched over £ 3y. The quotient by a 3-rotation along
one trivial component gives that M(3,6,3) is a 6-fold cyclic covering of

the 3-sphere branched over the double link, where the numbers denote
branched indices.

Fig. 6. The link £, 3, Fig. 7. The double link

For the alternating approach to Theorem, we introduce some basic
results on the representation theory of closed triangulated manifolds
via colored graph called crystallizations. For the further detail infor-
mation, refer {6], {7], [8] and [13].

THEOREM ([13]) Any closed connected pieceunse-hinear n-manafold
can be represented by a crystallization.

THEOREM ([5], [11)) Let M, M’ be closed 3-mansfolds and (T',7),
(I',v") two crystallizations of them. Then the follownng statements are
equivalent:

(1) M 1s homeomorphic unth M',

(2) (T',) and (I',%') are (I, II)-equivalent,

(3) (I',n) and (I'",4') are A-equivalent,

(4) (T,%) and (I',') are LCG-equivalent.

In [7], the algorithm for constructing a crystallization of the 2-fold
cyclic covering of the 3-sphere branched over a bridge-presentation of
a link and the following main theorem were given.

THEOREM ([7]) Gwen a bridge-presentation of a link L, the associ-
ated 2-symmetric graph 1s a crystallization of the 2-fold cyclic covering
of the 3-sphere branched over L.
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LEMMA The closed orientable 3-manifolds M(3,2d,d) «re 2-fold
cyclic coverings of the 3-sphere branched over a link L a4y Further-
more, M(3,2d,d) are 2d-fold cyclic branched coverings ! t'.e double
link «n the 3-sphere, where the branched wndices of its con.p-aents are
2d and 2, respectively.

PROOF We claim that M(3, 2d,d) := M{2d,d) can be (cpresented
by a 2-symmetric crystallization I'(2d,d). Consider the poly’.edral
schemata P(3, 2d, d) := P(2d, d), which defines the closed ori: itabl s 3-
manifold M(2d, d) as a quotient of a triangulated 3-ball B2 by pairwise
identification of its boundary 2-cells(see Fig. 2). Triangulal~ P{.//,d)
into a simplicial complex K (3, 2d, d) := K(2d, d) by using st sebdi-
visions two different ways according as d is even or odd. bur ~ an ple,
see triangulations of P(4,2) and P(6,3) in Fig. 8(a) and (b)

.
/
-
!
i

Fig. 8 (a). K(4.2) (b). K(6,3)

We only treat the case d odd. Indeed the case d even can be | an-
dled by the same way. Moreover we consider the case d = 3. That
is, we claim that P(3,6,3) can be represented by a 2-symmetric «rys-
tallization I'(6,3). One can immediately extend the conwtsric. . for
the general cases by a simple iteration. Let P{6,3) be th¢ nolw v iral
schemata which defines the closed orientable 3-manifold A4{*. 3) 15 a
quotient of a triangulated 3-ball B® by pairwise identific..i..t.  its
boundary 2-cells. Triangulate P(6,3) into a colored simplici* co-.1plex
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K(6,3).

Fig. 9. The colored complex K{6, 3}

We now construct a crystallization I'(6, 3) associated to K{6,3) as
follows(see Fig. 9). The vertices of I'{6, 3) are the elements of

V(6,3) = {(6,5(@)li = 1,2,... ,6} U{0,0'}
where
{ 1<j@)<m+3 if i=1,2,3,
1< (i) <2 if i=4,56.
The colored edges are defined by means of four fixed-point-free involu-
tions wg,v1,v2 and v3 on V(6,3). That is, for each i € A = {0,1,2,3}

two vertices @ and y in V(6,3) are joined by an edge colored % if and
only if ¥ = v,(z). For this purpose, we consider a subset Vi of V{6, 3);

Vi= {(373(3))“ = 174} U {O’OI}
with the following edge-colorations:
vo(1,1) = (5,2), v0(1,2) = (6,1),
’Uo(l, 3) = (2’4)a '00(174) = (33 3)7
7’0(4a 1) = (2)2)) vo(4,2) = (3= ]-)7
v(0) =0,

{ 'Ul(laj) = (133 — (—'1)j) where .7 € Z47
v1(4,2) =0/,



243 YANGKOK KIM

{ ’vz(l, 1) = O, ’02(1,2) = (4, 1),

v2(1,3) = (4,2), n(1,4) = (5,1),

{ v3(l,7) = (1,7 + (—=1)?) where j € Zy4,
1)3(4, 1) = (4, 2)

If we consider the action of a permutation n = (12 3)(456) on V
as follows;

(v, w) =(n(v),w) for (v,w) € V\{0,0'}, and
7 fixes O and O'.

then ViU 7(V1)Un?(V1) = V. For the edge-coloration of a crystallization
I'(6, 3) associated to K(6,3) we use the following rule:
if y = v,(z) for z, y in V, then we define n(y) = vy (n(z)).

Fig. 10 gives a crystallization associated to K (6, 3) with an extended
1-dipole {O, (2, 1)} where the dotted line is the auxiliary line for a LCG
move for an extended 1-dipole {0, (2,1)}.

Fig. 10. A crystallization of AM(6,3)

We apply a LCG move for an extended 1-dipole {O, (2,1)} to get
a 2-symmetric crystallization of M(6,3) as shown in Fig. 11, where
the dotted lines denote the axis of a 2-symmetric Heegaard splitting
induced by a 2-symmetric crystallization. We note that there may be
several extended 1-dipoles. However the result is independent of the
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choice of an extended 1-dipole for a LCG move.

Fig. 11. A 2-symmetric crystallization of M(6,3)

~
-~

Fig. 12 (a) (b). The link £, 3,

By applying Reidemeister moves on a 3-bridge link induced by a
2-symmetric crystallization of M(6,3)(see Fig. 12(a)), we have that
the link is equivalent to the link L3y as shown in Fig. 12(b). We
note that M(2d, d) are 2-fold cyclic branched coverings of the 3-sphere
over £y,4)- Furthermore M{2d, d) are 2d-fold cyclic branched coverings
of the double link in the 3-sphere, where the branched indices of its
components are 2d and 2, respectively.

PROOF oF THEOREM . We note that M(2d, d) admit 2-symmetric
Heegaard splittings by Lemma. Thus M(3,n, k) admit (n/d)-symmetric
Heegaard splittings by the rotational symmetry, where d = (n,k) as a
sense of [1]. This means that M (3,n,k) are (n/d)-fold cyclic branched
coverings of S over the link L£(1,4)- The quotient by a d-rotation along
one trivial component gives that M(3,n, k) are n-fold cyclic coverings
of the 3-sphere branched over the double link, where the branched in-

dices of its components are n and n/d, respectively. This completes
the proof.
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We denote by O,/4(L(1,4)) an orbifold whose underlying space is
the 3-sphere and whose singular set is £(; 4y with branched index n/d.
Similarly by O, ,/¢(Double link) we denote an orbifold whose underly-
ing space is the 3-sphere and whose singular set is the double link with
branching indices of its components are n and n/d, respectively. Then
we obtain the following commutative diagram of branched coverings.

COROLLARY

nj/d
M(3,n,k) el Onsa(L,a)
[l $d
MB,n,k) =5 O, /4 Double link)

where the labels of the maps indicate the degree of the covering.
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