East Asian Math. J 17(2001), No. 2, pp 185-189

ON FRÉCHET-URYSOHN EXPANSIONS

WOO CHORL HONG

ABSTRACT In this paper we study on Fréchet-Urysohn expansions of topological spaces, countable Fréchet-Urysohn spaces and Hausdorff Fréchet-Urysohn spaces.

1. Introduction

Let (X, \mathcal{T}_c) be a topological space endowed with a topology \mathcal{T}_c and let c denote the closure operator on (X, \mathcal{T}_c) . Let \mathbb{N} denote the set of all natural numbers and $(x_n | n \in \mathbb{N})$ (briefly (x_n)) a sequence of points in a set.

A function $[\cdot]_{seq}$ of the power set $\mathcal{P}(X)$ of X to $\mathcal{P}(X)$ itself defined by for each subset $A \subset X$, $[A]_{seq} = \{x \in X | (x_n) \text{ converges to } x \text{ in } (X, \mathcal{T}_c)$ for some sequence (x_n) of points in $A\}$ is called the *sequential closure operator* on (X, \mathcal{T}_c) . It is well known that for each subset $A \subset X$, $[A]_{seq} \subset c(A)$ and $[\cdot]_{seq}$ satisfies the Kuratowski closure axioms except for idempotent (see [1]).

Let us recall definitions in a topological space (X, \mathcal{T}_c) .

(a) Fréchet-Urysohn [1] (also called Fréchet [2, 3]): for each subset $A \subset X$, $c(A) \subset [A]_{seq}$.

(b) countable Fréchet-Urysohn: for each countable subset $A \subset X$, $c(A) \subset [A]_{seq}$.

Received February 26, 2001 Revised September 22, 2001.

²⁰⁰⁰ Mathematics Subject Classification 54D35 and 80

Key words and phrases Fréchet-Urysohn, countable Fréchet-Urysohn, Fréchet-Urysohn expansions.

From the definitions and the following example, we have that the following implication holds, but the converse does not hold:

 $Fréchet-Urysohn \Rightarrow$ countable Fréchet-Urysohn.

EXAMPLE. The space of ordinals $X = [0, \omega_1]$, where $\omega_1 \sim he$ first uncountable ordinal, is a compact Hausdorff space all of whose countable subsets are metrizable. Note that the point ω_1 is not a cluster point of each countable subset of X not containing ω_1 . Hence we see that the space X is countable Fréchet-Urysohn, but it is not Fréchet-Urysohn(see [3, p.125, Remark]).

Let (X, \mathcal{T}_c) be a topological space. If $\mathcal{T}_c \subset \mathcal{T}$ and (X, \mathcal{T}) is Fréchet-Urysohn, we call (X, \mathcal{T}) a Fréchet-Urysohn expansion of (X, \mathcal{I}_c) .

In this paper we study on Fréchet-Urysohn expansions of opological spaces, countable Fréchet-Urysohn spaces and Hausdorff Fréchet-Urysohn spaces.

Standard notations, not explained below, is the same as in [1].

2. Results

Let (X, \mathcal{T}_c) be a topological space and \mathcal{A} a family of subsets of X. The expansion of \mathcal{T}_c by \mathcal{A} denoted by $\mathcal{T}_c(\mathcal{A})$ is the topology on X with $\mathcal{T}_c \cup \mathcal{A}$ as subbase.

We recall that a family \mathcal{A} of subsets of X is *point finite*[5] if and only if each $x \in X$ belongs to only finitely many $A \in \mathcal{A}$.

THEOREM 1 Let (X, \mathcal{T}_c) be a topological space and let

$$\mathcal{A} = \{ c(A) - [A]_{seq} | A \subset X \text{ and } c(A) - [A]_{seq} \neq \emptyset \}.$$

If \mathcal{A} is point finite, then $(X, \mathcal{T}_c(\mathcal{A}))$ is a Fréchet-Urysohn expansion of (X, \mathcal{T}_c) .

PROOF If (X, \mathcal{T}_c) is a Fréchet-Urysohn space, then clearly $\mathcal{A} = \emptyset$, and so $\mathcal{T}_c(\mathcal{A}) = \mathcal{T}_c$. Hence, it remains to prove the case that (X, \mathcal{T}_c) is not Fréchet-Urysohn. Let $Y \subset X$ and $p \in c_{\mathcal{T}_c(\mathcal{A})}(Y) - Y$, where $c_{\mathcal{T}_c(\mathcal{A})}$ is the topological closure operator on $(X, \mathcal{T}_c(\mathcal{A}))$. Since \mathcal{A} is point finite, $\{A \in \mathcal{A} | p \in A\}$ is finite, say $\{K_1, K_2, ..., K_n\}$. Let M = $\cap \{K_i | i = 1, 2, ..., n\}$. Then, clearly, $Y \cap M \neq \emptyset$ since M is a basic open set in $(X, \mathcal{T}_{c}(\mathcal{A}))$ containing p. We first show that $p \in c_{\mathcal{T}_{c}(\mathcal{A})}(Y \cap M)$. Since $\mathcal{T}_c \cup \mathcal{A}$ is a subbase for $\mathcal{T}_c(\mathcal{A})$, by the definition of M, we have that for each basic open set U in $(X, \mathcal{T}_c(\mathcal{A}))$ containing $p, (\cap \{V_i | i \in \mathcal{I}\})$ $J\}) \cap M \subset U$ for some finite family $\{V_j | j \in J \text{ and } J \text{ is finite }\}$ of open sets V_{i} in (X, \mathcal{T}_{c}) containing p, and so $V \cap M \subset U$ for some open set V in (X, \mathcal{T}_c) containing p. Hence, it is sufficient to show that for each open set V in (X, \mathcal{T}_c) containing p, $(Y \cap M) \cap V \neq \emptyset$. Suppose on the contrary that there exists an open set V in (X, \mathcal{T}_c) containing p such that $(Y \cap M) \cap V = \emptyset$. Then, since $M \cap V$ is a basic open set in $(X, \mathcal{T}_{c}(\mathcal{A}))$ containing p and since $p \in c_{\mathcal{T}_{c}(\mathcal{A})}(Y), Y \cap (M \cap V) \neq \emptyset$, which is a contradiction. It is easy to see that for each subset Z of X, $c_{\mathcal{T}_{c}(\mathcal{A})}(Z) \subset [Z]_{seq} \subset c(Z)$. Hence, we have that there exists a sequence (x_n) of points in $Y \cap M$ such that (x_n) converges to p in (X, \mathcal{T}_c) . To end the proof, we claim that (x_n) converges to p in $(X, \mathcal{T}_c(\mathcal{A}))$. Suppose that it is not. Then there exists a basic open set U in $(X, \mathcal{T}_c(\mathcal{A}))$ containing p such that (x_n) is not eventually in U. We have already known that $V \cap M \subset U$ for some open set V in (X, \mathcal{T}_c) containing p. It follows that there is an open set V in (X, \mathcal{T}_c) containing p such that (x_n) is not eventally in $V \cap M$, and hence (x_n) is also not eventually in V because (x_n) is a sequence of points in M, which is a contradiction.

Now we study on Fréchet-Urysohn expansions of countable Fréchet-Urysohn spaces.

THEOREM 2 If (X, \mathcal{T}_c) is a countable Fréchet-Urysohn space, then $(X, \mathcal{T}_{[]_{seq}})$ is a Fréchet-Urysohn expansion of (X, \mathcal{T}_c) and moreover, for each sequence (x_n) of points in X and each $p \in X$, (x_n) converges to p in (X, \mathcal{T}_c) if and only if (x_n) converges to p in $(X, \mathcal{T}_{[]_{seq}})$.

PROOF First we show that $[[A]_{seq}]_{seq} \subset [A]_{seq}$ for each subset $A \subset X$. Let $x \in [[A]_{seq}]_{seq}$ Then, by the definition of $[\cdot]_{seq}$, (x_n) converges to x in (X, \mathcal{T}_c) for some sequence (x_n) of points in $[A]_{seq}$. And since $x_n \in [A]_{seq}$ for each $n \in \mathbb{N}$, there exists a sequence (x_{nm}) converges to x_n in (X, \mathcal{T}_c) . So, $x \in c(\{x_{nm} | n, m \in \mathbb{N}\})$. Since (X, \mathcal{T}_c) is a countable

Fréchet-Urysohn space and $\{x_{nm}|n,m\in\mathbb{N}\}$ is a countable subset of A,

$$c(\{x_{nm}|n,m\in\mathbb{N}\})\subset [\{x_{nm}|n,m\in\mathbb{N}\}]_{seq}$$

and hence

 $x \in [\{x_{nm} | n, m \in \mathbb{N}\}]_{seq} \in [A]_{seq}.$

Thus we have that $(X, \mathcal{T}_{[]_{seq}})$ is a topological sapce with the closure operator $[\cdot]_{seq}$.

Next we show that for each sequence (x_n) of points in X and $x \in X$, (x_n) converges to x in (X, \mathcal{T}_c) if and only if (x_n) converges to x in $(X, \mathcal{T}_{[]_{seq}})$. Since $[A]_{seq} \subset c(A)$ for each subset $A \subset X$, it is clear that the topology $\mathcal{T}_{[\cdot]_{seq}}$ on X induced by $[\cdot]_{seq}$ is finer than the topology \mathcal{T}_c and hence we have that if (x_n) converges to x in $(X, \mathcal{T}_{[]_{seq}})$, then (x_n) converges to x in (X, \mathcal{T}_c) .

Conversely, if (x_n) does not converge to x in $(X, \mathcal{T}_{[]_{seq}})$, then (x_n) is not eventually in some neighborhood U of x in $(X, \mathcal{T}_{[]_{seq}})$. It is obvious that there exists a subsequence $(x_{\phi(n)})$ of (x_n) such that the range $\{x_{\phi(n)}|n \in \mathbb{N}\}$ of $(x_{\phi(n)})$ and U are disjoint. Hence $x \notin [\{x_{\phi(n)}|n \in \mathbb{N}\}\}_{seq}$ and so, by the definition of $[\cdot]_{seq}$, $(x_{\phi(n)})$ does not converge to x in (X, \mathcal{T}_c) . Note that if (x_n) converges to x in (X, \mathcal{T}_c) , then $(x_{\phi(n)})$ converges to x in (X, \mathcal{T}_c) . Thus, by the contraposition of above fact, (x_n) does not converge to x in (X, \mathcal{T}_c) .

Finally we show that $(X, \mathcal{T}_{[]_{seq}})$ is a Fréchet-Urysohn space. Let $A \subset X$ and $x \in [A]_{seq}$. Then, by the definition of $[A]_{seq}$, (x_n) converges to x in (X, \mathcal{T}_c) for some sequence (x_n) of points in A. By the above fact that (x_n) converges to x in (X, \mathcal{T}_c) if and only if (x_n) converges to x in $(X, \mathcal{T}_{[]_{seq}})$, (x_n) converges to x in $(X, \mathcal{T}_{[]_{seq}})$ and thus it holds. The proof is complete.

REMARK It is clear that if (X, \mathcal{T}_c) is not a Fréchet-Urysohn space, then $\mathcal{T}_c \subsetneq \mathcal{T}_{[]_{seq}}$.

We finally introduce some results of J. A. Narvarte and J. A. Guthrie for Fréchet-Urysohn expansions of Hausdorff Fréchet-Urysohn spaces.

THEOREM 3[4] Let (X, \mathcal{T}_c) be a Hausdorff Fréchet-Urysohn space and $A \subset X$. Then $(X, \mathcal{T}_c(\{A\}))$ is a Fréchet-Urysohn expansion of (X, \mathcal{T}_c) .

188

THEOREM 4[4]. Let (X, \mathcal{T}_c) be a Hausdorff Fréchet-Urysohn space and \mathcal{A} a family of subsets of X. If \mathcal{A} is point finite, then $(X, \mathcal{T}_c(\mathcal{A}))$ is a Fréchet-Urysohn expansion of (X, \mathcal{T}_c) .

According to Theorem 2, we immediately have the following corollary and hence we omit the proof.

COROLLARY 5. If (X, \mathcal{T}_c) is a Fréchet-Urysohn space, then $(X, \mathcal{T}_{[]_{seq}})$ is a Fréchet-Urysohn expansion of (X, \mathcal{T}_c) .

References

- A V. Arhangel'skii and L.S. Pontryagin(eds.), General Topology I, Encyclopaedia of Mathematical Sciences, vol. 17, Springer-Verlage, Berlin, 1990
- [2] S P Franklin, Spaces in which sequences suffice II, Fund. Math 61 (1967), 51-56
- [3] E A Michael, A quintuple quotient quest, General Topology and its Applications 2 (1971), 91-138.
- [4] J.A. Narvarte and J A. Guthrie, Expansions of k-spaces, Topology and its Applications 12 (1981), 75-81.
- [5] S Willard, General Topology, Addison-Wesley, Reading, MA, 1970

Department of Mathematics Education Pusan National University Pusan 609-735, Korea *E-mail*: wchong@hyowon.pusan.ac.kr