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STOCHASTIC INEQUALITIES
IN TWO REPAIRABLE UNITS
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Abstract. In this paper we investigated a replacement model with two
types of repairs. Repairs are classified into minimal and perfect repair. An op-
erating unit is completely replaced whenever it reaches age 7(7 > 0)(planned
replacement). If it fails at age t < 7, it is either restored by a entire unit with
probability p(t)(perfect repair), or it undergoes minimal repair with probabil-
ity p(t) = 1 — p(t). After a planned replacement, the procedure is repeated.

1. Introduction and Basic Inequalities

Let X and X' be two non-negative independent random vari-
ables with survival functions F and G respectively, the statement
that random variable X is stochastically greater than the random
variable X', that is, the first unit with failure time X is said to
be more reliable than the second unit with failure time Y, if

F)=pX >t]>pX' >t]=G(t) forall teR, (1L1)

and the relation is written X :9>f X'’. The physical interpretation of
the inequality (1.1) is that the first unit is better than the second
unit if the first unit is more reliable than the second unit.

An extension to n-component random vectors is obtained by
calling random vector X = (Xj,...,Xn) stochastically greater

t
than random vector X’ = (X7,..., X}), written X 32 X', if ®X >
&X' for all increasing functions ®. (A Borel-measurable function
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® : R® — R is called increasing if x > x/, for any two vectors
X = (z1,...,2,) and x' = (zf,...,z), written x > x’ if z; >
zi, 1 =1,...,n, implies that ®(zy,...,z,) > ®(z},...,7").)

) n

As a further extension of stochastic ordering to stochastic pro-
cesses, we call stochastic process {X(t), ¢ > 0} stochastically
greater than stochastic process {X’'(t), t > 0}, written {X(¢), t >

0} 3 {X'(t),t > 0} if

(X (), X(ta)} > (X' (t1),.. , X't)}, (1.2)

foral 0 < ¢ <,...,< t, and all n = 1,2,..., implies that
t
BUX(t), t > 0}) > ®{X'(t), t > 0}) for if 2 > «, implies
Oz () > &x'().
LeMMA 1.1. Let X is independent and X' is independent.

st ~ ~ ~
X > X' if there exist two random vectors X = (Xy,...,X,)
and X' = (X1,...,X]) defined a common probability space such

that p[f( > X’] =1land X £ X and X' £ X', that is, X have the
same distribution of X and X' have the same distribution of X'.

Proof. This result has been proved by Ross [17] pp. 255-256.

LEMMA 1.2. Let X is independent and X' is independent. X

st
stochastically greater than X' written X > X' if ®X > ®X’ where
& is increasing functions.

Proof. From Lemma 1.1, let X = (X Tyeees X’n) is independent
and Y is independent,hwhere X; has the same distribution of X;
and X; < X/. Then X > ®X'. For each

®(Xy,...,Xp) 2 B(V4,...,Y,),

and so o
p[®X > t] > p[®Y > ¢]. (1.3)

Note that the left-hand side of (1.3) is equal to p[®X > t].
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LEMMA 1.3. Let X is independent and Y is independent. X

t
stochastically greater than'Y written X >Y if E[®X] > E[®Y]
for all increasing functions ® for which the expectations exist.

st
Proof. Suppose that X; > Y;, ¢ = 1,2, with X; and X, are
independent, and Y; and Y; are independent. Then

(Xls X2) Z (Yla YZ)

Let ®(z;,z2) is an increasing function such that E[(X1, X3)] and
E[(Y1,Y,)] exist. From Lemma 1.1, let X; has the same distribu-
tion of X;. Then

E[®(X1, X2|X1 = 11)] = E[®(X1, X2| X1 = 12))
> E[®(X1,Y,|X; = 21)].
It follows that
E[®(X1, X2)] > E[®(X1,Y2)]. (1.4)
Inequalities (1.4) can be also expressed by
E[®(X,,Y2)] > E[®(Y1, Y2)). (1.5)
Combing the (1.4)-(1.5) inequalities, we obtain that
E[2(X1, X2)] > E[®(11, V2)]. (1.6)
In case @ is increasing, it is clear from the above proof that equal-
ity holds if and only if X =Y.

2. Inequalities in Series unit

In this section, we considered the basic inequalities involving
expectations of increasing functions of an n-unit series unit be-
fore proceeding to applications of repairable unit in the following
section. And we now show that the mean life of an n-unit series
unit with IFR units whose means are 1/p; (i = 1,...,n) exceds
the mean life of an n-unit series unit with exponential and means

1//1,,' (22 1,... ,n).
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PROPOSITION 2.1. Let X;(Y;) the life length of unit i, have
continuous distribution F;(G;) with mean p;. Let X(Y) is inde-
pendent and F; < G;, i = 1,...,n, ie., F; is star-shaped with
respect to G;(F; < G; if (1/z)(G~1F,(z)) is increasing for x > 0).

Then the mean life of a series unit using units with lives X is
stochastically greater than the corresponding unit mean life using

st
units with lives Y, written X > Y that is,

E[minX] > E[minY]. (2.1)

Proof. See Barlow and Proschan [3] pp. 122.

LEMMA 2.1. Let F is IFRA with mean 1/u and
G(z) = exp(—puz) such that F < G and E[X] = E[Y]. Then

/0 Fla)do > /0 () da, (2.2)

and
+o00 +00
/ Fr)de< | Glz)ds. (2.3)

t

Proof. Assume that F' is IFRA and F is not identically equal
to G. Because F have IFRA distribution and G have exponential
distribution with the same mean, F' crosses exp(—z/u) exactly

once, and the crossing in necessarily from above at, say zo; that
is F(zo) = G(zy).

PROPOSITION 2.2. (a) Let F is IFRA distribution with mean
1/u and G(z) = exp(—px) such that F < G and E[X] = E[Y].
Then,

E[®(X)] < E[®(Y)); (2.4)

where ®(X) denote the decreasing convex function. _
(b) Let F is IFRA distribution with mean 1/p and G(z) =
exp(—px) such that F < G and E[X] = E[Y]. Let ®(X) is

decreasing convex functions on [0, +o0c). Then

E[@®minX] < E[®minY]. (2.5)
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Proof. (a) Let X = minX.
+o00
E[®(X)] = /0 (z)dF () dz
+o0
= —0@F@|™+ [ 6@F@)ds,

where we denoted ¢(z) = ®'(z) and Fi(z) = 1 — F;(z). Since
®(X) is bounded then —@(x)?(m)l: < +00. Moreover, since

®(X) is convex then ¢(x) is increasing and thus all the condition-
als of Theorem 4.8[2] are satisfied and

e ¢(z)F(z) dz < o+°° ¢(z)G(z) dz. (2.6)

Since F crosses G exactly once, and the crossing in necessarily
from above at, say zo; that is F(zq) = G(xo). Then

400 +00 _
A ¢(x)F () dx — A ¢(z)G(z) dx

_ / " 6(@) - $(z0)][F(z) - C(a)) de

+o0 . .
+ [ (o) - o)l Fe) - G da < 0.

0

is nonpositive, since for ¢() — ¢(zo) > 0 and F(z) —G(z) < 0 for
zo < T < +oo. Similarly, ¢(z) — ¢(xo) < 0 and F(z) ~ G(z) > 0
for o < z < +00.

(b) The proof is similar to part (a).

ProrosiTION 2.3. If the X; are independent, F; is IFR dis-
tribution with mean 1/u;, and Gi(z) = 1 — exp(—pz) for i =
1,...,n such that

E[min X] >

(2.7)

n

> B

.
Il
-
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Proof. For any nonnegative random variables X;, i = 1,... ,n,
min X = 1/(max(1/X)), and

EminX] = E [maxl(%)J > 1

The second and forth inequality are just an application of Jensen’s
n

inequality. The third inequality is maxX < ¥~ X;.

i=]1
PROPOSITION 2.4. Let X = minX. If X; are independent,
F; is IF R distribution, and G; are exponential, fori =1,... n,
E[X;] = E[Y;] = 1/p;. Then for ®(z) = exp(—az),

n
E Hi
i=1

a+ 3
i=1
(2.8)

E[¢(X)] = E[exp(—aX)] = E[exp(—a min X)] <

Proof. The distribution of X is given by Fx(r) = [] Fi(z)
1=1
and its density by fx(z). Therefore,
+oo n+1

Elexp(—aX)] <1- a/o H Gi(z) dz, (2.9)
i=1

where the inequality (2.9) follows from Proposition 2.3 and G;(z) =
exp(—piz) for i =1,... ,n and Gp41(z) = exp(—axzx)

Elexp(—aX)] <1 - (2.10)
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3. Some models

Let ¢t be the age of a unit and A(t) be the failure rate(or the
hazard rate) function belonging to F(t); that is,

A(t) = I—-f(;—)(t) £ = 3 pa). (3.1)

In general, the failure rate of a unit after repair is not neces-
sarily the same as just before the failure, but it tends to vary a
little depending on the numbers and the degrees of failures. We
assumed that the good-as-new condition of unit is described by a
survival distribution F' which is a continuous function and such
that F(x) > 0 for all £ > 0.

Let G(t) be the distribution function of random variable Y =
total time among perfect repairs. Formally, Y7, Y3,..., Y,_; be
a sequence of nonnegative independent random variables with a
common distribution G(t). Also let G(t) = p[Y < t]. The survival
distribution of the time between successive perfect repairs is given
by

G(t) = exp [—— /Otp(:c)/\(:v) da:] , (3.2)

where G(t) = 1 — G(¢) and G(0) = 0. Hence, p(t)A(t) denotes
the failure rate function belonging to G(t). Thus if F(t) is the
failure time distribution following perfect repair, then the failure
time distribution following minimal repair for a unit with fails at
age z given by

Fiz)=p[X;>z]=pX >t+z|X >t]= f%%:)i) (3.3)

Model 3.1. An operating unit is repaired at failure. Repa’.s
are classified into minimal and perfect repair. A minimal rep-.r is
the maintenance active to repair the failed unit so that its func-
tion is recovered without changing its age, while a perfect repair
restores the entire unit into the new condition so that it behaves
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as a new unit. After a failure occurs, repair are perfect with prob-
ability p(t), and minimal with probability 5(t) = 1 — p(t). If we
let N(t) denote the number of perfect repairs in [0, £}, then the
process N = {N(t), t > 0} is a renewal process generated by
the life distribution G of a new unit. We denote the number of
minimal repairs up to tome ¢ by N,,(t). It is well known that
the process N, = {Nmn(t),t > 0} is a Nonhomogeneous Possion
process(NHPP) with mean function E[N,,(t)] = — In F(t), where
F(t) = 1 - F(t) is the survival probability and F(t) is assumed to
be continuous and strictly between 0 and 1 for all values of ¢t > 0.
Then the hazard function A is defined by

A(t) = ~log F(2),

i.e., F(t) = exp[—A(t)], for ¢ > 0.

PROPOSITION 3.1. (a) Let X = (X,,...,X,) and X' = (X],
..., X]) be two sequences of non-negative random variables such

st
that X, > X/,

st
!
Xi-i—ll(Xj, i=1,...,9)=(z;, j=1,... ,4) 2> Xi+1I(X;, i=1,...,8)=(z;, j=1,...,3)

fori=1,...,n~1 and for all z,,...,z, and

Xivil(x;, j=1,... i)=(e;, j=1,... i)i=1,... n—1

and
Xivilxt, j=1,.. iy=(z;, j=1,... i)i=1,... ;n=1
1+1( j:J— ""7")_(117 = )"-11)11“" yiie T

are stochastically increasing in the z’s. Then
st
X > X'\

(b) Let X = (X1,...,Xy) and X' = (X{,...,X,,) be two
sequences of non-negative random variables with the life times of
the two processes {Np,(t), t > 0} and {N/}.(t), t > 0}. Let we

assumed that ,
8

X > X.
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Then forall0<t; <,...,<tpbandn=12,...,

{Nm(tl)s"' ’Nm(tn)} S {Nr’n(tl),--- 7N1’n(tn)}'

Proof. (a) This result has been proved by Theorem 4.13 of
Barlow and Proschan[3].
(b) By Lemma 1.1, there is a common probability space and

random variables X and X' defined on it such that X > X', and
X2 X and X' £ X'. Now let {N(£), ¢t > 0} and {N/,(¢), t >
0} be the process with life times X and X'. Then

{N! (t) =k} C {N.(t) > k} = {ZX’<t}

Cc {ZX: < t}
= {Nm(t) > k} = {Nm(t) = k}.

Thus N/ (t) < Nip(t), t > 0. Finally

(N! (t), i=1,...,n) = (NL(t), i=1,...,n)
< (Np(ts), 6=1,...,n)
= (Nm(ti)a = 13 ’n)

PROPOSITION 3.2. Let F(t) be NBU. Let N(t) be renewal
processes generated by the life distributions G(t). The process
N (t) is a NHPP with mean function E[N,,(t)] = — In F(t) where
F(t) =1 — F(t) is the survival function of the unit. Then

N(t) 2 N (). (3.5)

Proof. Let F(t) be NBU. Here we let {Xi,...,X;} and {11,
Y,} denote the life length for the minimal repair Ny, (t) and
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the renewal N (t), respectively. Since p[Yy > t] = G(t) > p[X; > ¢]
= F(t), and

p[Xk > t|X1 =T1,y... y Xg—1 = .’L‘k_l] = —F—k-l (t),
Ty
=1

where
(k=1
F ( z; + t)
Fi., ()= z=kl—l
ié:l o —F .Z',)
i=1
And

P[Yn > t’Y1 =Ylyeer , Ypo1 = yn—l] = P[Yn > t] = —G.(t)

By the NBU
k-1
F (E x; + t)
=1

_ (k=1
F(£7)

1==1

PROPOSITION 3.3[AGE-NONDEPENDENT MINIMAL REPAIR].
Let F(t) be NBUE. An operating unit is completely replaced
whenever it reaches age T(7 > 0). If it fails at age t < 7, it is

either restored by a entire unit with probability p(t), or it under-
goes minimal repair with probability p(t) = 1 — p(t). Then

G(t).

IA

Jo F(t)dt [5(7) + fo exp [— Jy p(z)A(z) dx] () dt]
G(7)

EW] <

(3.6)
IfYi.<n, Yo<r,..., Yo 1<, Y, >

Proof. Now if N(t) = k, and X1 < ... < X are the times of
the minimal repairs. Then

= 1

: k
PN () = k; YZt]=F(t)H[ / ﬁ(m))\(fv)dw] . @
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where (X;) denote the probability of i—th minimal repair. Hence

E [lﬁ)ﬁ(&) = exp [—- /0 tp(w)r\(x) dx] :

And
gE Lljlz_?(Xi)] = /OT exp [— /otp(x),\(x_)} A(t) dt — G(7).

Also
/OT G(t)dt = /07 F(t)dt

+ /OT_F(tIXk) [/‘0" exp [— /Ot p(z)A(z) d:z:] A(t) dt — G(T)} dt.

(3.9)
Let F(t) be NBUE. From (3.9) we obtain

/OT G(t)dt < /OTF(t)dt [@(T)+/OT exp [-— /Otp(a:))\(x)dx] A(t) dt].

Hence E[W] of the expected total time of an unit until planned
replacement is bounded above by

Jo Ft)dt [@(r) + [ exp [— S p(z)A(z) da:] A(t) dt]
G(7) '

(3.10)

PROPOSITION 3.4. Let X; have IFR distribution F; and Y;
have exponential distribution G; and E[X;] = E[Y;] = p; for all
i=1,...,n. Let ®(-) is increasing functions on [0, +00). Then

E[®minX] > E[®minY]. - (3.11)

Proof. Suppose @ is increasing, and X; is not identically equal
to Y;. Because X; have IFR distribution F; and Y; have expo-
nential distribution G; with the same mean. Let X have IFR dis-
tribution F' and there exists an exponential random variable W
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with distribution function G, such that E[X] = E[W]. If W(Y)
have exponential distribution F(G) with mean E[W] > E[Y],
that is, Fw(z) = exp(—yz) and Fy(x) = exp(—6z). The den-
sity of Y crosses W exactly once from above at, call zg, that is,
fw (o) = fy (o). Solving d exp(—dzo) = yexp(—7yzo) yields

! In (é) > 0.
d—v \7
Let X = minX and ¥ = minY. By the Lemma 1.3 we have
E[®X] > E[®Y], and by Theorem 2.1 we have E[W| > E[Y].
Note that Y is also exponential. If E[W] > E[Y], there exists a

unique point z¢ where the density of Y crosses density of X and
the crossing is from above. Since

Tg =

+00
E[®(W)] = /0 ®(x)y exp(—7z) dz,

and oo
E[3(Y)] = /0 &(c)6 exp(—63) dz.

We get
E[®(W)] - E[2(Y))

= ‘/:0 [®(z) — ®(z0)][yexp(—yz) — d exp(—dz)] dt

+00
+ [ 18() - @(a)llyesp(—ra)  dexp(~ba)]dz < 0,

To

is nonnegative, thus ®(z) < ®(z) and vyexp(—yz) < d exp(—dz)
for 0 < z < zo. Similarly, ®(z) > ®(zo) and yexp(—yz) >
d exp(—dz) for zg < z < +00.

Model 3.2. We consider a failure process with unit having
life distribution F. Let 7,)(t) be the time from t until the next
perfect repair or minimal repair, let d,(;)(t) be the time from the
last perfect repair until t and let p,)(t) be the failure rate of

Yp(ty (2)-
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PROPOSITION 3.5. Let F be IFR and let vy, (1) (t) and vp,(¢)(t)

are independent and let 0, (y)(t) and 0p,(t)(t) are independent. If
p1(t) > pa(t), for all t > 0, then

st
Tp: (t)(t) 2 Tp2(t) (t) (3'13)

Proof. We first assumed that Gy(t) = exp [ i p1(z)A(z) do:]

and G3(t) = exp [ fot p2(z)A(z) da:] for all ¢ > 0, respectively. Let
F be IFR and p(t) be increasing. Note that

+00
Plrpe) (t) > 7] = /(; Py (t) > 2|dp(e) (t) = y] dp[Op(e) (¢) < 9],

(3.14)
and also p[dy(:)(t) < y]’s asymptotic distribution is
[YG(2) dz
lim plp(t) <yl= 2o
t—+00 [Bpe) (8) < J= 0+ G(z) dz

From Theorem 3 of Brown[brownal, that v,)(t) and 6, (%) are
stochastically decreasing in ¢.

0+°° F(z|y)Ga(y) dy
® Gy(z) do
= p[¥p, (1) (t) > ],

PV ey (t) > 2] 2>

where f0+ F(x|y) dy is decreasing in y, and G(y)/ f z)dris
stochastically decreasing in y. Hence p[vp)(t) > z] is decreasmg
in t. Furthermore, the failure rate function belonging to v,)(t)

is
ppty () = o Flzly)GCy)Az+y) dy
" T (aly)Oy) dy

If p1(t) > pa(t), let ppy be the failure rate function belonging to
Yp(t) (t), since

(3.16)

Hp, (t) (t) < Hpa(t) (t) (3.17)
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