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In this paper, the electromagnetic characteristics of a 
grounded slab and a parallel-plate structure are analyzed 
by the Spline-type Divided-Difference Interpolation (SDDI) 
technique. The technique efficiently evaluates the MoM 
impedance matrix elements of the multifold spectral or 
spatial domain integrals or summation in integrodifferen-
tial equations. The numerical results of the proposed 
method agree well with those of the corresponding litera-
tures. 
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I. INTRODUCTION 

When layered media problems are solved by the method of 
moment (MoM), the computational time is mainly determined 
by the spectral integration or summation of Green’s functions 
or impedance matrix elements unless they are expressed as 
closed-forms [1], [2]. A number of researchers have tried to 
improve the numerical efficiency of evaluating spectral inte-
grals [3], [4] or summation [5]. Fast computation of the Som-
merfeld–type integrals has been combined with parabolic La-
grange interpolation [6]. Recently, the spectral integrals for 
Green’s functions are decomposed into the fast converging 
terms and their asymptotic closed-forms [7]. Furthermore, 
combined with the technique in [7], the SDDI scheme is de-
vised to more efficiently characterize RF devices [8]. In [8], 
spectral integration is performed using the SDDI. 

Not as in [8], in this paper, the SDDI technique is used for 
solving integrodifferential equations including differentiation 
with respect to spatial variables. Spatial derivatives as well as 
integrals can be conveniently evaluated with the help of the 
spline concept and converging order of terms in divided-
difference polynomials. Besides, the derivatives can be con-
tinuous in the spatial interval. 

In Section II, the representative equations in the aforemen-
tioned case are established and the SDDI technique is briefly 
introduced. In Section III, electromagnetic radiation and scatter-
ing problems are analyzed using the SDDI technique. Though it 
can be applied to more complex structures, the electromagnetic 
characteristics of planar-layered media such as a microstrip 
patch, a line-fed microstrip patch antenna and a parallel plate 
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are analyzed via the SDDI technique in this paper. Finally, the 
numerical efficiency and accuracy of the proposed approach 
are compared to those of the corresponding references. 

II. THEORY 

1. Formulation 

A. Spectral Domain Equation 

The basis-expanded and tested dyadic Green’s function of 
the spectral integral, which is often encountered in the evalua-
tion of impedance matrix elements for the field equations, is 
given by 
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where ),(~
jiim kkJ  and ),(~

jiij kkG  are current density and a 
Green’s function in the spectral domain, respectively. In (1), the 
subscripts i and j represent x, y or z, and mρr  and snρr  stand 
for the m-th field and n-th source points, respectively. 

B. Spatial Domain Equation 

In analyzing the electromagnetic coupling problem, poten-
tials need to be computed as usual. Particularly, when the ex-
ternal field penetrates through an aperture of a parallel plate 
waveguide, the boundary condition for the magnetic fields on 
the aperture is given by 

+−−− =++ ,,,, sris HHHH .            (2) 

Superscripts + and - refer to the internal and external regions 
of the structure, respectively. iH , rH  and sH  stand for 
incident, reflected and scattered fields. The scattered magnetic 
field inside the parallel plate can be expressed as 
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where 00µεε rk =+ , 00 / εεµη r=+  and rε  is the 
relative permittivity inside the parallel plate. =+ )(rF  
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+  is the Green's function, sM +  is the magnetic 
current density, and m′  and n′  mean the directions of the 
vector potential and magnetic point source. )(rm
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∇  is del operator with respect to the observation coordinates, 
and C  is the velocity of light. ),( rrg nm ′′′

+  is represented as 
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where p denotes the integer and w  is the separation of the 
two plates. 

2. SDDI Technique 

Since the SDDI is the extended version of the Divided-
Difference Interpolation (DDI) [9], we briefly compare the 
DDI with the Lagrange Interpolation (LI) which is frequently 
adopted in numerical calculation. The numerical scheme of LI 
[9] is expressed as 
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where 
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)(RPn , pR , and )( pRf  are the interpolating polynomial 
of order n , the p-th sampling point, and the value of an inter-
polated function at pR , respectively. Whereas, the DDI scheme 
is given by 
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are the interpolating polynomial of order n , its v -th product 
group, the u-th sampling point, and the value of an interpolated 
function at uR , respectively. For better understanding, (1), (3) 
or (4) corresponds to )( uRf , regardless of spectral or spatial 
domain. Examining (5) and (6), the higher the order of a term 
in )(RPn  of the DDI becomes, the smaller its coefficient gets, 
but none of the coefficients can be neglected in the LI case [9]. 
The procedural averaging (smoothening-out) effect makes the 
DDI need practically only a few terms of the interpolating 
polynomial. Whenever a sample is added, the LI calculates all 
the increased number of terms, but the DDI just adds the new 
one [9]. However, the DDI with low order interpolating poly-
nomials cannot always guarantee the accuracy in the entire in-
terval of a problem. To overcome this shortcoming of the DDI 
approach, the spline concept is adopted and SDDI is devised 
[8]. This means that the entire interval is segmented and differ-
ent numbers of samples and orders can be determined for in-
terpolation for each interval. In addition, problem-related de-
rivatives can be adopted for spline-realization, considering spa-
tial differentiation. 

In applying the SDDI technique to the analysis of a layered 
media problem, the sampling scheme needs to be carefully 
chosen. To generate the sampling points, uniformly and non-
uniformly spaced sampling schemes can be used. The uni-
formly spaced sampling scheme is preferred, if R  for an im-
pedance matrix element tends to be regularly distributed. Oth-
erwise, the non-uniformly spaced sampling scheme is used.  

If an x-directed strip is considered and its length l is much 
larger than its width w , sampling for interpolation can be 
made at the points separate by a uniform distance larger than 
segmentation unit x∆  along the x-axis. The distance variable 
R  for the impedance matrix calculation is xk∆ , where k  is 
nonnegative integer varying zero through a number smaller 
than xl ∆/ . So the uniform sampling needs fewer samples 
than xl ∆/ . For the non-uniformly spaced sampling scheme, 
let x∆  and y∆  be the unit sizes of basis-function segmenta-
tion in x-and y-directions, respectively used for a patch with 
dimension of W  ×  L . Then, the number of pulse bases 
necessary in x-direction is p ( ≡ xW ∆/ ) and that in y-
direction becomes q ( ≡ yL ∆/ ). R  for calculating the im-
pedance matrix elements q corresponds to min×m  

),( yx ∆∆ , where m  is nonnegative integer varying zero 
through ( ) ( )22 11 −+− qp . Since mutual interactions between 
the two elements with distance R  over four times 

),min( yx ∆∆  almost monotonously decrease, the number of 
iR  is roughly 5 times ( maxN +1), where maxN  is the maxi-

mum of n  with )(RPn  which can be varied in the seg-
mented interval. For both the two sampling schemes, the value 

of the interpolated function at a point having distance R is de-
termined by (1) or (4). 

III. NUMERICAL RESULTS AND THEIR 
COMPARISON 

In order to show the better performance of the SDDI over the 
DDI in a given interval, a non-monotonically varying function 

)9.3)(1.3()6.2)(1.1()( −−×−−= RRRRRf is calculated 
using both the techniques. In Fig. 1, it is shown that the SDDI 
with a lower order ( 3=n ) produces almost the same values as 
the DDI with a higher order ( 5=n ) gives. This means the 
SDDI with fewer samples can more efficiently interpolate 

)(Rf  than the DDI. 
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Fig. 1. Comparison of the results obtained by the DDI and the
SDDI. 
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Fig. 2. Magnitude of xxZ  as a function of distance from the source
point on a microstrip patch with dielectric thickness d = 0.16
cm, relative permittivity rε =2.54 , frequency = 2.29 GHz ,
and maxN =3 – 5. 
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Fig. 3. A line-fed microstrip patch antenna with the same geometrical
parameters as those in [10]. (a) 3-D geometry, (b) x-directed
current, (c) y-directed current, (d) Magnitudes of S11. 
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Spectral integrals encountered in analyzing the characteris-
tics of microstrip structures can be calculated by the proposed 

method. In Fig. 2, the basis-expanded and tested Green’s func-
tion )( snmxxZ ρρ rr

−  for a 6.25×6.25 2cm  square patch on 
a grounded dielectric slab with thickness d = 0.16 cm and rela-
tive permittivity rε  = 2.54 at operating frequency of 2.29 
GHz is calculated using the non-uniformly spaced sampling 
scheme. The segment size is x∆ = y∆ = 10/λ  is used for the 
interpolation. In Fig. 2, the solid line is obtained by the method 
in [7], and the others represent the results by the proposed 
method with maxN =3, 4, 5. xxZ  is interpolated well for 

maxN =5, but is not for maxN =3, 4. It indicates that the result  
starts to converge when maxN  is 5. 

A line-fed microstrip patch antenna is analyzed by the pro-
posed method for spectral integration, which is more complex 
than the simple microstrip patch as illustrated in Fig. 2. Geo-
metrical parameters for this structure in Fig. 3(a) are the same 
as those of [10]. 11S  is defined as the reflection coefficient at 
the feeding line. The sampling is non-uniformly performed 
with n =1 for xR ∆≤≤0 , n =5 for xRx ∆≤≤∆ 10  and 
n =1 for xRx ∆≤≤∆ 1210 . The total of used sampling points 
is 21. Figures 3(b) and 3(c) show the electric surface current 
densities directed in x- and y- axes, respectively, and they sat-
isfy the edge conditions. 11S  obtained by the proposed method 
is in good agreement with that of measurement [10] as is 
shown in Fig. 3(d). 
 

Fig. 4. A parallel plate with an aperture with the same geometrical
parameters as those in [11]. 
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Different from the previous problems, when the electromag-
netic fields are coupled into the parallel plate through an aperture 
as in Fig. 4 [11], the summations and derivatives of the Green’s 
function need to be evaluated. Regions )(+ ( 0>z ) and 

)(− ( 0<z ) are filled with dielectric materials of ( 0εε r , 0µ ) 
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Fig. 5. Comparison of the summation-type Green’s function cal-
culated by the SDDI and free-space Green’s function. 
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and ( 0ε , 0µ ), respectively. 1=rε , and the y-polarized electric 
field is normally incident on the λλ 5.05.0 ×  rectangular ap-
erture in an infinite ground plane. The separation between the 
two plates is λ8.2 . The incident magnetic field is given as 

η
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y
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i ˆˆˆ ++= , 

kkk ii /ˆ =  and zzyyxxr ˆˆˆ ++= . The summation-type 
Green’s function for the given aperture problem is calculated 
by the conventional and proposed technique, and the results are 
compared with free space Green’s function in Fig. 5. The trun-
cation number of the summation is set as 300. )(rPn  with 

5max =N  is used in the SDDI scheme. In Fig. 5, the values 
obtained by the SDDI technique (◆) agree very well with 
those of the summation (-●-). Nine rooftop basis functions are 
used in x and y directions, respectively, to calculate the mag-
netic current on the aperture, which is the unknown of the inte-
grodifferential equation. Figure 6 shows the computed distribu-
tion of the electric field along x and y directions. The values 
obtained by the SDDI technique(-) accurately approach those 
in [11] (●). Figure 6(c) presents that the electric field shows 
the edge behavior in the y-direction as expected. 

To investigate the numerical efficiency of the SDDI tech-
nique, the computational time of the proposed method is com-
pared to that of other approach. As shown in Table 1, the pro-
posed technique can save the overall computational times for 
all these electromagnetic problems. The proposed method with 

maxN =5 can solve the problem of Fig. 2 about 46% faster than 
the method in [7]. In the analysis of the line-fed microstrip 
patch antenna, the computational time is saved by around 47%. 

For the parallel plate structure, the computational time of 
48.76% can be saved by the proposed technique. 
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Fig. 6. X-directed electric field distribution on the aperture of the
parallel plate. (a) along x-axis, (b) along y-axis, (c) 3-D ge-
ometry. 
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Table 1. Comparison of the computational times. 

Problem 
Structure 

Computational times 
(other methods) 

Computational 
times      

(proposed method)

Microstrip patch 
( Fig. 5) 

Method in 
[6] 4.0221 310×  secs 2.1593 310×  secs

Line-fed 
Microstrip patch 

(Fig. 6) 

Method in 
[6] 4.0688 310×  secs 2.1603 310×  secs

Parallel plate 
structure 
(Fig. 7) 

Direct 
summation 1.487

310×  secs 0.762
310×  secs 

  

IV. CONCLUSION 

It is shown that the evaluation of integrodifferential equations 
including spatial differentiation can be accelerated by the SDDI 
scheme using fewer samples and spline-concept. Also, the nu-
merical accuracy of the present approach is verified by apply-
ing this method to the electromagnetic characterization of a 
grounded slab and a parallel-plate structure. It is believed that 
the proposed technique can be extended to solving the electro-
magnetic equations having highly oscillatory kernels in integral 
or integrodifferential equations and more complex structures, 
and it needs to be investigated further in the near future.  
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