Effects of Sunghyangchungisan(SHCS) on Cellular Ion Contents and Metabolism in Cat Brain Cortical Slices under Hypoxic Insult

성향정기산(星香正氣散)이 저산소(低酸素) 발작상태(發作狀態)의 고양이 대뇌(大腦) 피질(皮質) 절편(切片)의 이온 함량(含量)과 대사(代謝)에 미치는 효과(效果)

  • Kim, Young-Kyun (Department of Circulatory Internal Medicine, College of Oriental Medicine, Dong Eui University) ;
  • Kwon, Jeong-Nam (Department of Circulatory Internal Medicine, College of Oriental Medicine, Dong Eui University) ;
  • Cho, Su-In (Department of Herbology, College of Oriental Medicine, Dong Shin University) ;
  • Kim, Na-Ri (Department of Circulatory Internal Medicine, College of Oriental Medicine, Dong Eui University)
  • 김영균 (동의대학교 한의과대학 내과학교실) ;
  • 권정남 (동의대학교 한의과대학 내과학교실) ;
  • 조수인 (동신대학교 한의과대학 본초학교실) ;
  • 김나리 (동의대학교 한의과대학 내과학교실)
  • Published : 2001.12.30

Abstract

목적: 고양이 대뇌피질 절편을 사용하여 저산소 발작을 유발한 뒤, 성향정기산이 세포의 이온 환경과 대사의 변화와 관련하여 어떤 영향을 미치는지 연구하였다. 방법: 고양이의 대뇌 피질 절편에 저산소 발작을 유발한 뒤 flame photometry scintillation, Spectrophotometry, method of Jorgensen and Skou, method of Fiske and Subbarow, oxygen monitor, luciferin-luciferase assay 등을 이용하여 세포내 이온함량과 세포대사를 측정하였다. 결과: 성향정기산은 저산소증으로 유발된 세포내의 $K^+$$Na^+$의 함량의 변화를 현저하게 지연시켰다. 성향정기산은 Na-K-ATPase의 억제제인 와바인 또는 대사억제제인 2.4-DNP로 유발된 세포내 $K^+$함량의 변화에 어떤 효과도 보이지 않았다. 또한, 정상 상태의 절편뿐만 아니라 저산소 상태의 절편에서 분리된 과립체의 분설에 있어서 Na-K-ATPase의 활동도에 영향을 미치지 않았다. 성향정기산은 저산소 발작하에서 산소 소비량과 세포의 ATP함량이 떨어지는 것을 현저하게 막았다. 또한 ATP를 생산하는 기능을 보호하는 저산소 조직의 사립체를 돕는데 효과적이었다. 결론: 성향정기산은 대뇌 조직의 저산소 발작하에서 세포의 이온 환경과 대사를 보호하는 유익한 효과가 있음을 알 수 있다.

Keywords

References

  1. Lab Invest v.62 no.6 Mechanisms of cell injury by activated oxygen species Farber, J.L.;Kyle, M.E.;Coleman, J.B.
  2. Proc Soc Exp Biol Med v.208 no.4 The relation of oxidative stress and hyperexcitation to neurological disease Bondy, S.C.
  3. Curr Biol v.4 no.11 Neurode-generative disease;Oxidative stress and motorneuron disease Sendtner, M.;Thoenen, H.
  4. Physiol Rev v.65 no.1 Effect of anoxia on ion distribution in the brain Hansen, A.J.
  5. Exp Txicol Pathol v.52 no.4 Histochemical characterization of cytotoxic brain edema;Potassium concentrations after cerebral ischemia and during the postmortem interval Oehmichenm, M.;Ochs, U.;Meissner, C.
  6. Am J Physiol v.243 no.3 Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats Sick, T.J.;Rosenthal, M.;LaManna, J.C.;Lutz, P.L.
  7. Neurol Res v.22 no.5 Brain metabolic and ionic responses to global brain ischemia in the newborn dog in vivo: 1. Methodological aspects Yoles, E.;Zorovsky, Y.;Zarchin, N.;Mayevsky, A.
  8. The Enzymes of Biological Membranes v.3 The Na+-K+ transporting adenosine triphosphatase Glynn, I.M.;Martonosi, A.(ed.)
  9. Adv Exp Med Biol v.474 Mediators of cerebral edema Schilling, L.;Wahl, M.
  10. Zheng Zhi Yao Jue Dai si Gong
  11. Zeung Mak Bang Yak Hap Pyun Hwang, Do-Yeon
  12. Catagraphology of Oriental Medicine Yun, Gio-Young
  13. Cardiology of Oriental Medicine Ku, Bon-Hong
  14. Summary of Treatment v.1;2 Kim, Jung-Jae
  15. Arch Biochem Biophys v.36 no.2 Analytical differential centrifugation: and analysis of the sedimentation properties of synaptosomes, mitochondria and lysosomes from rat brain homogenates Cotman, C.;Brown, D.H.;Harrell, B.W.;Anderson, N.G.
  16. Biochem Biophys Res Commun v.137 no.1 Preparation of highly active ($Na^++K^+$)-ATPase from the outer medulla of rabbit kidney Jorgensen, P.L.;Skou, J.C.
  17. J Biol Chem v.66 The colorimetric determination of phosphorus Fiske, C.H.;SubbaRow, Y.
  18. Anal Biochem v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford, M.M.
  19. Anal Biochem v.21 Determination of picogram amounts of ATP using the luciferin-luciferase enzyme system Lyman, G.E.;DeVincenzo, J.P.
  20. Ann N Y Acad Sci v.834 Cation and cardiac glycoside binding sites of the Na,K-ATPase Lingrel, J.B.;Arguello, J.M.;Van Huysse, J.;Kuntzweiler, T.A.
  21. Toxicology v.110 Comparative effects of the metabolic inhibitors2,4-dini-trophenol and iodoacetate on mouse neuroblastoma cells in vitro Andres, M.I.;Repetto, G.;Sanz, P.;Repetto, M.
  22. Pharmacol Ther v.82 no.1 Hypoxia and neuronal function under in vitro conditions Nieber, K.
  23. J Clin Exp Neuropsychol v.18 no.5 Neurochemical mechanisms in brain injury and treatment: a review Novack, T.A.;Dillonm, M.C.;Jackson, W.T.
  24. Brain Work Hypoglycemia and the central nervous system Ferrendelli, J.A.;Ingvar, D.H.(ed.);Lassen, N.A.(ed.)
  25. Membrane Transport in Biology Passive cation fluxes in red cell membranes Lew, V.L.;Beauge, L.;Tosteson, D.C.(ed.)
  26. Explanation of Bang Yak Hap Pyn Shin, Jae-Yong
  27. Colorful Clinical Phytology Shin, Min-Gyo
  28. Effects of SHCS on blood pressure and heart beat Ahn, Gong-Lyp
  29. Effects of SHCS on the cranial pressure and blood pressure in the rabbit Mun, Byung-Sun
  30. Effects of SHCS on contractile reactivity and $Ca^{2+}$ metabolism in isolated rabbit carotid artery Kim, Jong-Hoon;Kim, Young-Kyun
  31. Effects of SHCS on the change in functional integrityassociated with wxidative injury in cultured endotherial cell Lee, Dong-Uhn;Kim, Young-Kyun
  32. Lab Invest v.62 no.6 Mechanisms of cell injury by activated oxygen species Farber, J.L.;Kyle, M.E.;Coleman, J.B.
  33. Cell Signal v.11 no.2 Oxidant, mitochondria and calcium: an overview Chakraborti, T.;Das, S.;Mondal, M.;Roychoudhury, S.;Chakraborti, S.