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ABSTRACT

We present a 4-parameter implicit Lagrangean code which satisfies conservation of mass, linear and angular
momenta, energy and entropy simultaneously. The primary advantage of this scheme is possibility to control
dissipative properties of the scheme avoiding the effects of numerical viscosity.
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I. INTRODUCTION

In the numerical simulation of astrophysical gaseous
systems it is important to employ numerical schemes
satisfying as many conservation laws as possible. This
work presents an example of the scheme with better
conservative properties against the traditional schemes.

II. BASIC DEFINITIONS

The system of hydrodynamic equations constitutes
N scalar hyperbolic equations that can be written in
. a form of conservation laws. It is significant that such
- presentation sometimes is non-unique and the number
of conservation laws M may be greater than N. For
example, for 1D plane-parallel gas flow we have N = 3
but M =4 (mass, linear momentum, energy, entropy).

Definition 1 The numerical scheme is conservative
if it satisfies Mgcpeme > 0 conservation laws.

Definition 2 The numerical scheme is completely
conservative if Mgcpeme = N.

Definition 3 The numerical scheme is superconser-
vative if Mycheme > N.

In this paper we present an example of a supercon-
servative scheme and sketch briefly its basic properties.

III. SUPERCONSERVATIVE NUMERICAL
CODE: ONE-DIMENSIONAL CASE

The Lagrangean form of 1D hydrodynamic equa-

tions of a perfect gas with a constant specific heats
ratio v in a plane-parallel geometry is

or
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Here ¢(r) is the external gravitational potential, n =
7(p,T) is the coeflicient of dynamic viscosity, x =
x(p,T) is the coefficient of heat conduction, and the
other notations are standard.

The divergent form of equations (2) and (3) reflects
conservation of mass and linear momentum, respec-
tively (the momentum is conserved if ¢ = 0). Two
additional conservation laws, for energy and entropy,
follow from corresponding deduced equations
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We base our scheme on that developed by Samarskij
& Popov (1992). We introduce a non-homogeneous grid
with a variable mass step m; 1/, and variable time step
7". Hereafter subscripts denote the number of a spatial
cell whereas superscripts refer to the number of a time
step. The superscript n at 7 will be further omitted.
To abridge notation we use

I
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The fully explicit scheme corresponds to the limiting
value A = 0, and completely implicit scheme to A = 1.
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We define kinematic quantities r; and u; with integer
indices at cell boundaries, while thermodynamic quan-
tities, P‘H—l/?) Pit1/2, Ei+l/27 Ti+1/27 with half—integer
indices are defined in the centers of cells. In this no-
tation m;y1/o is the mass of the cell between r; and
ri+1. We also introduce a mass step associated with
the integer node

1
M; = 5 (mi_l/g + mi+1/2). . (12)
After all, the finite difference scheme is written as
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This is a 4-parameter finite difference scheme which can
be either explicit or implicit depending on the coeffi-

cients Aj, j = 1,...,4; here Pi[l{\/lz]

for pressure to be defined later. .

It can be easily seen that (13)-(17) satisfy the re-
quirements for a completely conservative scheme ir-

Pi[l’l’\/l.z] . Indeed, in

Lagrangean variables mass is conserved automatically
[see (14)]. Equation (15), written in a divergent form,

guarantees conservation of linear momentum. Multi-

plying equation (15) by ugo‘s), adding this to equa-

tion (16) and taking into account equations (13), (14),
we obtain the equation of energy conservation

is an approximation

respective of the specific form for
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In order to make the scheme superconservative we
define
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By using equatiens (19), (13) and (14) we transform
equation (16) into the form of a finite difference ana-
logue of equation (8)

plvrd =

1 ay—1 - . 1
mi+1/2Rp3+1/2pZ+1/2(Ti+1/2pz’+17/2 - Ti+1/2pz‘+17/2)

(v = Dalplfs + (1= M)pi) )

05  (0.5)]2
= (n0)}7) [“iﬂ — ]
MP)ir1/2 Mit1)2
() () (Aa) _ p(r)
oy TO9, -1 7OV

z+1/2_( )()\3) i+1/2 i—1/2

+(Xp)¢+1/2 i—1/2 Mi

Miy
(20)
Thus, in dissipationless case (n = x = 0) entropy of
each fluid particle S;; /0 ln(Ti_{_l/gp;;l'Y/Q) is con-
served.
Generally, the scheme (13)-(17), (19) is ~ O(7 + h?),
except for the case Ay = ... = Ay = 1/2 when the
accuracy in time becomes of the second order.

Let us note that written in the form (16), the en-
ergy equation correctly reproduces the balance between
thermal and other energies.

IV. TECHNICAL RECIPES

In practical use, to avoid errors arising from small
quantities in the denominator of r.h.s. of equation (19)
we develop p7 7! in a series of Ap = p — j at the point
p and thus the fraction regularizes
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with the expansion broken when specified accuracy is
reached. If v = m/n, where m and n are integer, the
expansion breaks off then automatically:
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In particular, for v = 5/3 and A\; = 1/2 we obtain a
regularized symmetric second order approximation
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Regularized calculation of approximated graviational
force in equation (15) is carried out analogously. We
expand ¢(r) at the point 709 = L(r +7) in Ar =

7 — (05, i

¢(r) = o(F) _ ¢/(T(o.5))+%d//(r(&u’»))m«? ... (24)
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Here the prime denotes derivative with respect to r.

The functions ¢'(r), ¢"'(r), ... along with @(r)
should be prescribed in a program analytically as sub-
routines. Test.runs show that one or two terms in ex-
pansion (24) are often sufficient for practical use.

If ¢(r) has a polynomial form of rational degree, the
fraction (24), similarly to (22), allows exact division.

V. ALGORITHM OF COMPUTATIONS

The scheme is implicit and highly non-linear. In or-
der to solve it numerically, one needs some iterative
procedure such as Newtonian iterations. The system
(13)-(17), (19) is linearized and is reduced to a tridiag-
onal system of linear equations which is solved by the
direct matrix sweep method. It should be noted that
truncation of Newtonian iterations implies an approx-
imate nature of superconservativity in practical com-
putations. However the iterative process converges to
computer zero after 4-6 iterations if the time step does
not significantly exceed the minimal characteristic time
in the problem. Though the superconservative scheme
is absolutely stable itself, the Newtonian procedure im-
poses a time step limitation for convergence.

VI. SUPERCONSERVATIVE NUMERICAL
CODE: MULTIDIMENSIONAL CASE

Generalization of the scheme (13)-(17) to multidi-
mensional case is straightforward. However, some new
circumstances arise.

First, we have an additional conservation law. In

the central field
¢=08(r), r=+a?+y? (25)

the angular momentum is conserved. To achieve angu-
lar momentum conservation in the scheme we define
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Secondly, since the system of linearized equations
loses its tridiagonal structure, numerical solving of the
scheme becomes more expensive. In this case the sys-
tem can be solved by the conjugate gradient-type iter-
ative method.

Thirdly, in the shear flows the Lagrangean cells have
a tendency to overlap so that the grid reconstruction
is required. Unfortunately, interpolation disturbs su-
perconservativity. In this case we may either exploit

the superconservative scheme in the problems without
shear or use the completely conservative version of the
scheme by using grid reconstruction. -

VII. CONCLUSIONS

The superconservative scheme combines advantages
of both the Lagrangean schemes such as high resolution
and flexibility, and implicit schemes which lift stability

" restrictions. However, the primary advantage of the su-

perconservative scheme is that it allows to avoid non-
physical effects of numerical viscosity in hydrodynamic
simulation. This property is important in numerical
solution of stiff problems in which: i) dissipation is the
governing parameter of the model, and ii) the char-
acteristic viscous or heat conductive times are much
greater than the dynamical one. Under these circum-
stances, we can choose a sufficiently large time step of
integration being sure that it will not lead to anoma-
lously great numerical dissipation.

1D scheme and its efficiency has been tested in calcu-
lations of hydrodynamics with strong heat-conduction
and cooling effects (Kovalenko & Shchekinov 1992),
and with self-gravity (Kovalenko & Sokolov 1993). 2D
scheme has been used for calculation of instability of
spherical accretion on to a black hole (Eremin & Ko-
valenko 2001). Tests show that the superconserva-
tive scheme is especially suitable for smooth isentropic
flows. At the same time in the flows with discontinu-
ities the effects of numerical dispersion become rela-
tively strong, which is manifested through spurious os-
cillations across a discontinuity. Thus, a combination
of physical or artificial viscosity and artificial disper-
sion (Samarskij & Popov 1992) are recommended to be
added.
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