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ABSTRACT

PMDSPH is a combined 3D particle-mesh and SPH code aimed to simulate the self-consistent dynamical evolu-
tion of spiral galaxies including live stellar and collisionless dark matter components, as well as an isothermal gas
component. This paper describes some aspects of this code and shows how its application to the Milky Way helps to
recover the gas flow within the Galactic bar region from the observed HI and CO longitude-velocity distributions.
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I. INTRODUCTION

The 3D PMDSPH code is a substantially modified
version of Friedli’s (1992) PMSPH code, which itself is
a merging of a particle-mesh (PM) N-body code using
a polar-cylindrical grid (Pfenniger & Friedli 1993) and
a Smooth Particle Hydrodynamical (SPH) code devel-
oped by Willy Benz. The main original features of the
present code are (i) the passage from a single gravita-
tional grid to a double grid geometry, allowing to in-
crease the resolution in the disc region of the spirals to
be modelled, (ii) the way the smoothing lengths of the
SPH particles are updated at each time step, (iii) the
algorithm to find the closest neighbours to each SPH
particle, and (iv) the replacement of the Runge-Kutta-
Fehlberg time integrator by a “synchronised” leap-frog.
Sections I to IV are devoted to a description of the code,
merely focusing on those points.

In the last decade, the evidence that the Milky Way
is a barred galaxy has become overwhelming. The
presently most quoted values for the main parameters
of the bar are an inclination angle of its major axis rela-
tive to the Sun-centre line ¢ = 15° —45°, with the near
end of the bar pointing in the first Galactic quadrant,
and a corotation radius Rcr = 3.5—5 kpc (see Gerhard
2001 for a recent review). Several groups have tried to
model the gas kinematics implied by such a bar. Sec-
tion V shortly summarises the results obtained in this
respect using our PMDSPH code. More details can be
found in Fux (1999).

II. GRAVITATION

The gravitational potential is related to the mass
density p(7) through the Poisson integral, which in
polar-cylindrical coordinates writes:
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where:
1
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is the Keplerian kernel. The ¢ and z integrals are con-
volutions which can be efficiently calculated by fast
Fourier transform (FFT) using the convolution theo-
rem (note that the Keplerian kernel does not truly sat-
isfy the conditions of this theorem, but the softened
kernel adopted in the code does). The integration over
R must be done by directly. :

Our code derives the potential on polar-cylindrical
grids. Hereafter, we first consider the case of a single
grid, for which more details can be found in Pfenniger
& Friedli (1993), and then extend to the double grid.

K(.)=

(2)

(a) Single grid

To apply the FFT in ¢ and z, a constant vertical
(H,) and azimuthal spacing of the grid cells is required.
The radial distribution of the cells is free and taken as
logarithmic with a linear core to avoid an accumulation
point at the centre:

exp [1/(3+52)] -1
exp[NR/(2 —)]—1

where Rmayx is the maximum radial extent of the grid.
This choice ensures that the cells are nearly square-
shaped in the z — y plane over a large radial range.
The number of cells is (Ng + 1) X Ny x (N, +1). The
advantage of this grid over Cartesian grids when sim-
ulating spiral galaxies is that the azimuthal and radial
resolutions increase towards the centre.

The potential is softened using a variable homoge-
neous ellipsoidal kernel with semi principal-axes paral-
lel to the R, ¢ and z directions and matched to the
local cell dimensions (see Fig. 1).

The mass assignment is achieved by distributing
the mass of each particle to the height nearest grid

R] = Rmax ) .7 - 07 "aNR7 (3)
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points according to the Cloud in Cell method (CIC,
Hockney & Eastwood 1981). With the substitution
dM = pRdR' d¢' dz' and transforming into finite sums,
equation (1) becomes:

Nr
(I)ié,i¢,iz =-G E XiRajRai¢,iz7 (4)
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where Mjy, j, ;. is the total mass assigned to the grid cell

indexed (jR,j¢,J-)- The discrete version of the convo-
lution theorem then leads to:

Kinsinlkoks = [Miplkg b, - (Kinjalksks,  (6)

and
Ngr
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jr=0

where the hats stand for the 2D Fourier transform in
¢ and z. The potential finally results as the inverse
Fourier transform of [®;, ]k, ., -

~ The kernel is not symmetric in ¢g and jgr. Its Fourier
transform is computed only once in the beginning of the
simulation and then stored in memory. To optimise
the FFT, Ny and (N, + 1) must be a multiple of small
prime factors. Only the part of the grid from j, =1 to
N./2 is used for the mass assignment (“active” grid).
The other part, with Mj, ;. ;. = 0, is added to kill the
periodic images of the potential (doubling-up method,
see Hockney & Eastwood 1981). The plane j, = 0
provides the necessary potential for the evaluation of
the vertical forces at 7, = 1. Note that in Fux (1999),
N, is defined as half this parameter here.

The accelerations are first calculated at the grid
points by finite differentiation and then interpolated
to the particle positions by inverse CIC. For the parti-
cles outside the active grid, the acceleration is approx-
imated assuming that the total mass of the system is
confined at the centre. A drawback of the PM method
is that the position of the centre of mass (CM) is ex-
ponentially unstable. This problem is suppressed by
subtracting the position 7om and velocity of the CM
to the phase-space coordinates of the particles every
time when |Fom| > Dim = 1074 kpc.

(b) Double grid

A single grid with constant H. fails to model ef-
ficiently the high density contrast between a thin disc
and an extended halo (lots of cells waisted in z). There-
fore, a second lower resolution grid (B) is added to
the original grid (A), as illustrated in Fig. 1, with grid

R

Fig. 1.— Example of a double grid with Np =10, Ny =12,
N./2 =13 and M, = 3. The solid points and dotted lines -
are the points and meshes of grid A, and the circles and
solid lines those of grid B. Only the active parts of the grids
are represented. The top frame also shows the projection
of the gravitational kernel within one cell.

points defined as:

B _ pA
R; = Ry,

¢? = @a(j—1)+1,

N, /2+1
ZE: [k——/2—+

i=0,...,Ng/2, (8)
j=1,...,Ng/2, (9)

} M,H,, k=0,...,N,. (10)

Grid B has half the number of cells in R and ¢, skipping
every second point of grid A in these dimensions, and
the same number of cells in z but with a spacin% of
M, H,. Its radial size is as grid A, but 22, = M, z5;,..
Both grids have constant spacing in ¢ and z, allowing
to keep the advantage of the FEF'T algorithm in those
dimensions. Ng and Ny must be even and the vertical
grid parameters are chosén to satisfy N, /2 = 14 2IM,,
! integer > 2, ensuring that (i) there are grid points of
each grid in the plane z = 0, (ii) the horizontal planes
z = £25  delimitating the active part of grid A also

contain points of grid B, and (iii) grid B has at least
four cells within grid A in the z dimension.

The mass assignment is done twice (once for each
grid), and the total potential involves the evaluation
of three sub-potentials: ®, $5 and ®¢, respectively
due to the mass within grid A, the mass within grid B,
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and the mass within the part of grid B outside grid A.
The sub-potential ®4 is the only one computed at high
resolution on grid A. The total potential then amounts
to 4 + ®¢ in the region of grid A, and simply to &g
outside this region. The increase of CPU time owing to
the triple potential evaluation is largely compensated
by the reduction by a factor ~ M, of the effective num-
ber of cells relative to a single grid with the same reso-
lution as grid A and the same size as grid B. The small
force discontinuities at the vertical boundaries of the
active part of grid A are linearly smoothed out within
the region 2z, — M, H, <|z| < z&,..

III. SPH

We will not discuss here the details of the SPH tech-
nique (see for instance Benz 1990 and Monaghan 1992
- for reviews), but rather start by noting the following.
The PMDSPH code assumes an isothermal perfect-gas
equation of state, i.e. P = c2/v - p with a sound speed
¢s constant in space and time. In particular, there is no
energy equation involved in the code, and the adiabatic
index v and ¢ play a degenerate role. The adopted
SPH kernel is a spherically symmetric spline that van-
ishes outside two smoothing lengths. The gravity of
the gas particles is included and calculated exactly as
for the other collisionless particles.

The next two subsections describe how the smooth-
ing lengths are handled by the code and present the
algorithm used for the search of neighbouring particles.

(a) Smoothing length updating

The gas particles are given individual smoothing
lengths h; in a way such that the number of neighbours
Nj to each particle always remains as close as possible
to a constant number N,, allowing to increase the spa-
tial resolution in high density regions like shocks.

At each time step, the h;’s are updated considering
the 3D scaling law:

by (Mt L)' (11)
ho No-i-lpi ’

where h, and p, are constants, and +1 is added to
take into account particle . Because the determination
of the density p; at the particle location requires the
hi’s which are not known a priori, one usually takes
the time derivative of equation (11) and substitute the
continuity equation to yield:

dhi 1, {1 dN; =
@~ 3" (.Ni+1 a TV U)' (12)

hi

]

The traditional approach'to ensure a constant number
of neighbours is to set dN;/dt to zero. However, this
does not prevent a slow numerical departure of the N;’s
from N, with time. Instead, the present code takes

advantage of the IV; term to correct such departures by
setting:
sz - No Nl’ (13)
dt nAfL
where n7>1 is a parameter to soften the correction over
several time steps At and avoid sharp changes in the
forces. Equation (12) is then integrated along with the
phase-space coordinates. The standard deviation of
the neighbour numbers resulting from this procedure
is generally only o(N;) ~ 1.5.

The initial conditions often lead to a large spread
of the N;’s. Therefore the simulations are started with
a small At allowing the h;’s to automatically adjust
without much evolution.

(b) Neighbour search

In Friedli’s original code, the search of the neigh-
bours to each SPH particle is based on the 3D linked list
method. The main steps are as follows: (i) the gas par-
ticles are sorted into increasing z, y and z coordinates,
and by decreasing smoothing length h;, (ii) each space
dimension is divided into N, planes with the same num-
ber of gas particles between successive planes, (iii) a list
of particles within each cell defined by this space sub-
division is created, (iv) proceeding by decreasing h;,
the cells within 2h; of each particle ¢ are localised, and
(v) for all gas particles j within these cells, the distance
rij = |F; — 73| is derived and the particles ¢ and j are
considered as mutual neighbours if r;; < h; + h;. This
last reciprocity requirement ensures that the forces be-
tween pairs of particles are symmetric.

In the present code, this algorithm has been modified
in two ways: the space subdivision is done only in the
z and y dimensions (2D linked list), and we first test
whether z;; = |2; — z;| < h; + h; before computing
rij, which is more time consuming because involving
three multiplications. This reduces the CPU time for
the search of neighbours by a factor ~ 3, mainly owing
to the first of these changes, and this is true even for
spherical distributions of particles. The algorithm is
fastest when there is roughly one gas particle per cell
on the average, i.e. when N, ~ /Ng,s.

IV. INTEGRATOR

The basic requirements for an ideal time integrator
are (i) an adaptative time-step to temporally resolve
the gaseous shocks, (ii) a second order accuracy in the
time step At, which is enough under particle noise,
(iii) a precision similar to the time-reversible leap-frog
algorithm for constant At, (iv) synchronised positions
and velocities, (v) only one force evaluation per At,
and (vi) a memory saving execution.

The adopted algorithm is a synchronised version of
the leap-frog (e.g. Hut et al. 1995). At each time
step, the positions and velocities of all particles and
the smoothing lengths of the gas particles are modified
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according to:

1
et = FP A+ 5‘1‘"(&75")2, (14)
1
it o= O+ 5@" +ath A", (15)
1 . . :
RITY = A+ §(h? + AT AL, (16)

where the @;’s are the accelerations. Contrary to the
statement in Fux (1999), the position and velocity part
of the algorithm are both exactly reversible in time
(Monaghan 2001, private communication). In colli-
sionless N-body simulations and at constant At, this
algorithm produces results very similar to the stan-
dard leap-frog algorithm. In particular, both algorithm
conserve equally well the total energy and the total
z-component of the angular momentum. However, the
Runge-Kutta-Fehlberg algorithm (Fehlberg 1968) im-
plemented in Friedli’s original code leads to a signifi-
cantly different evolution and to a much worse conser-
vation of these quantities.

" In simulations with gas, the pressure and viscous
forces contributing to @, as well as A}'t', depend on
smoothing lengths and velocities which are not known
. a priori. To solve this problem, d’?“ and h?“ are cal-

culated with first order predictions of these quantities,
_ which does not compromise the second order accuracy

- of A, g7t and AT

K]

The time step in PMDSPH is adaptative and its up-
dating procedure is inspired from Friedli’s code. After
step n, the next time step At"*! is estimated from
the condition that the maximum relative contribution
per time step of the second order terms to the inte-
grated quantities should not exceed a given tolerance
E... This condition, which is applied only to gas parti-
cles and is essentially driven by the smoothing lengths,
is tested after step n+1 and, if not satisfied, the former
values of the integrated quantities are restored and in-
tegrated again with a smaller At"*'. The time step is
also given an upper limit At, dictated by the Courant
criterion.

Equations (15) and (16) and the step-rejection test
impose to store the old values of all integrated quanti-
ties and related derivatives except the velocities of the
non-gaseous particles, hence conflicting with require-
ment (vi). Otherwise, the algorithm satisfies all other
requirements listed above.

V. APPLICATION TO THE MILKY WAY

Aiming a better understanding of the observed fea-
tures in the HI and CO longitude-velocity diagrams
within the Galactic bar region (Fig. 2), the code has
been used to evolve a bar unstable axisymmetric model
of the Milky Way. This initial model includes a stel-
lar nucleus-spheroid, a double exponential stellar disc,
a double Gaussian and linearly flaring gas disc, and a
dark halo to ensure a flat rotation curve well beyond

V [kmis]

&IO éO 4'0 0 -2'0 -4‘0 —6‘0 —E‘D
1 [dsg)
Fig. 2.— '?CO longitude-velocity diagram integrated over
the range |b] < 2° (from Dame et al. 2001). Some of the

main features within the central few kpcs are also shown.

the solar circle, which is treated as a live component
during the simulation (see Fux 1999 for details). The
stellar and dark components are represented by over
1.4 x 107 particles, and the gas component by 150 000
SPH particles. The stellar and gas particles have the
same mass to minimise two-body relaxation effects.
The parameters of the gravitational double grid are set
to Ngp X Ny x N, = 62 x 64 x 242, M, = 6, H, = 60 pc
and Rmax = 50 kpc. The sound speed for the gas in
the simulation discussed here is ¢ = 10 kms™* and its
adiabatic index v = 5/3. The SPH related parameters
are N, = 35, n = 5 and N, = 500, and the time in-
tegration parameters Ey, = 0.1 and At, = 0.1 Myr.

The simulation is first run keeping the gas compo-
nent fixed to avoid an unrealistic concentration of gas
in the centre while the bar is still growing, which owes
to the absence of star formation in the code. The bar
is formed after ~ 1.4 Gyr, with an in-plane axis ra-
tion b/a ~ 0.6. The gas is then gently released at
t = 2.4 Gyr (for the case presented here), increasing
gradually the non-axisymmetric part of the potential
to its full value over half a rotation period of the bar,
and the integration is carried out self-consistently to
t = 2.78 Gyr.

The density centre of the bar oscillates around the
centre of mass with an average amplitude of ~ 300 pc,
and is closely tracked by a nuclear ring appearing in
the gas component. The gas flow is asymmetric and
remains non-stationary throughout the simulation, re-
producing qualitatively the observed -V diagram only
at specific times and thus suggesting a transient nature
of the observed inner gas kinematics. Some mpeg ani-
mations, including live £~V diagrams, are available at
http://obswww.unige.ch/ “fux.

Figure 3 shows a snapshot of the simulation where
the gas reproduces well many of the observed features.
One of the greatest success of this model is that it al-
lows to identify the £ — V traces of the shock induced
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Fig. 3.— Selection of a model from the simulation which provides a good qualitative agreement to the observations (Fig. 2).
a) £—V distribution of the gas particles. b) Face-on view of the gas distribution, with the location of the observer indicated
by the ® symbol. The bar inclination angle is ¢ = 25° and the ratio of the corotation radius to the galactocentric distance
of the observer is Rcr/Ro = 0.55. ¢) Link between the spiral arms in the £ — y plane and their £ — V traces.

gaslanes near the major axis of the Galactic bar, which
are so often seen as prominent dustlanes in optical im-
ages of external barred galaxies. The near-side branch
of these gaslanes corresponds to the connecting arm,
"and the far-side branch is predicted as a velocity elon-
gated feature which is indeed apparent near £ = —4.5°
in Fig. 2. Furthermore, the 3-kpc and the 135-kms~!
arms are interpreted as the inner prolongations of disc
spiral arms passing close to one end of the bar and
joining by a large bow around the centre the gaslane
on the other side of the bar. The substantial asymme-
try in velocity of these arms at £ = 0 is because they
reach different depths in the central potential well.

The PMDSPH code and its single gravitational grid
homologue are available by request to the author.
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