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ABSTRACT

We present the whole basis of numerical method and useful formulae for general relativistic magnetohydrody-

namic simulations in Kerr space-time.
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I. INTRODUCTION

Relativistic jets now have been discovered in sev-
eral different classes of objects, including active galac-
tic nuclei (Pearson & Zensus 1987; Biretta, Sparks, &
Macchetto 1999), micro-quasars (Mirabel & Rodriguez
1994; Tingay et al. 1995), and gamma-ray bursts
(Kulkarni et al. 1999). It is believed that a rapidly
spinning black hole exists at the center of each of these
objects and that the violent phenomena that occur near
the hole is responsible for the jets. Dynamics of magne-
tized plasma around Kerr black hole is one of the most
promising candidates of the process in the violent phe-
nomena. In order to understand the basic physics of
dynamics of magnetized plasma around a black hole,
we have developed a numerical method for general
relativistic magnetohydrodynamic (GRMHD) simula-
tions in Kerr space-time (Koide, Meier, Shibata, & Ku-
doh 2000). In this paper, we present the whole basic
method for it (Sections II and III) and summarize the
useful formulae for the test problems of the GRMHD
code (Section IV). An example of the GRMHD simu-
lation is shown in Section V.

II. BASIC EQUATIONS

(a) Four-dimensional Form of GRMHD Equa-
tions

In order to understand the basic physics of plasmas
around a black hole, numerical method of general rel-
ativistic MHD is demanded. The method is based on
the general relativistic formulation of the laws of par-
ticle number, energy-momentum, Maxwell equations,
and Ohm’s law with zero electrical resistance (ideal

general relativity, magnetohydrodynamics, Kerr black hole, numerical method

MHD condition) on curved space-time (Weinberg 1972;
Koide, Shibata, & Kudoh 1999; Koide et al. 2000). The
space-time (2%, 2,22, 2%) = (ct,2', 22, 2°) is described
by metric g,,, where the line element ds is given by
(ds)* = guudz*dz”. Here, c is the speed of light. The
basic equations of GRMHD in four-dimensional space-
time are

0

o 1
Vi (pU”) = W@xu

& =llglleU*) =0, (1)

1
Vv, T = 3—67(\/ —llgllT*)+15,T7" =0, (2)
—|lgll o=
8uFu/\ + auF)\u =+ a)\Fuu = 0: (3)
VuF" = —pyJ”, (4)

where V, is covariant derivative; ||g|| is the deter-
minant of the matrix with the element g,,; F;\W =
1.A Oguv 99vo 89
3977 (‘ dze + Fzn T Bar

UY and J” = (cpe,J', J%, J?) are four-velocity and
four-current density, respectively (p. is the electric
charge density); the general relativistic energy momen-
tum tensor 7" is given by

) is Christoffel symbol. Here,

1 )
Zigl“/F)\hF)\ﬁw
(5)

where F#¥ is the electromagnetic field-strength tensor,
Fuo = 0,4, — 0,4, and 4% = (¢e/c, A}, 4%, 43) is

TH = pg"” + (€in + p)URU” + FEFY7 —
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four-vector potential (¢, is the electro-static potential).
The electric field E; and the magnetic field B; are given
by Ei = CFio (Z = 1,2,3) and B1 = F-23, B2 = Fgl,
B; = Fi, respectively. Scalar values p, p, and ej,; are
proper mass density, proper pressure, and proper inter-
nal energy density e, = pc® + p/(L — 1), respectively,
where T is the specific heat ratio. In equation (4), o
is the magnetic permeability in the vacuum. In addi-
tion to the equations, we assume the infinite electric
conductivity condition

E,UY =0. (6)

Using this condition, equations (1)-(3) close self-consistently.

Equation (4) is used only to calculate the current den-
sity J#.

We assume that the off-diagonal spatial elements of
the metric g, vanish,

(v # J)- (7)

Here Roman number (i,j) runs from 1 to 3, while Greek
number (i, v, A) runs from 0 to 3. We write

9i; =0

goo = —hﬁ, gii = h?7 (8)

gio = goi = —hjwi/c. (9)

Then the scale of small element in the space-time is
given by

3

(ds)2 = g dztds” = —hg(cdt)z+Z[h?(dgﬂ)2_2h?widtdmi]

i=1
(10)
When we define the lapse function a and ‘shift velocity’
(shift vector) 8° as

3 Botos 2
a=yr+ 3 (M) (1)
1=1

p=lun (12

ca
the line element ds is written as

3
(ds)? = —a(cdt)® + ) _(hidz’ — cfadt)®.  (13)

Furthermore, the contravariant metric is written ex-
plicitly as

1
QOO = —E’ (14)
o= gt = - (15)
a? ¢
g7 = (6Y —B'87). (16)

(b) Kerr Space-time

A Kerr black hole has two characteristic parame-
ters, the mass M and the angular momentum J. We
often use the rotation parameter a = J/Jmax, where
Jmax = GM?/c is the angular momentum of the max-
imumly rotating black hole with the mass M (G =
6.67 x 107 1'Nm?/kg? is the gravitational constant). In
the Boyer-Lindquist frame (2°, z*, 22, 2%) = (ct, 7,6, ¢),
the metric of Kerr space-time is written as,

2r,T P A
0 =1/ SR \/A,hz VY, hs \/2811197

(17)

2
QCT‘éCLT
W1 = Wy = O, W3 = A (18)

where 1, = GM/c? is called the gravitational radius,
A =12 = 2,7 + (arg)?, © = 1r? + (arg)? cos® 6, and
A = {r? + (arg)*}® — Afarg)?sin® 0. In this metric,
the lapse function is a =+/AX/A. The radius of the

event horizon is rg = 7g(1 +v1 —a?), which comes
from a = 0. We also often use Schwarzschild radius of
the black hole, rs = 2GM/c* = 2r,.

The rotating black hole drags the space around it.
This is called frame-dragging effect. It causes the spe-
cial region around it, in which any matter, energy and
information should rotate in the same direction as the
black hole rotation. This region is called ergosphere.
The surface of the ergosphere is given by hg = 0, that
is 7 = rg(1 +v1 —a?cos?f). In the ergosphere, the
shift velocity ¢3% is greater than the light speed. The
shape of the surface is like that of an apple in a high
rotation parameter case (a ~ 1), with a cusp-like dim-
ple at the top and bottom: at the pole it touches the
horizon r = ryg and on the equatorial plane, the radius
is r5. In the low rotation parameter case, a < 0.8, the
shape is like an ellipsoid.

(¢) 3+1 Formalism of GRMHD Equations

We present the 3+1 formalism of general relativis-
tic MHD (GRMHD) equations derived from the four-
dimensional expressions (1) - (4), and (6). We use sev-
eral frames to observe physical quantities as follows.

e Laboratory frame
This is a global frame fixed to the observer far
from the black hole. In the astrophysics, it may
be better that it is called ‘Observer-at-infinity’
frame. In the Kerr space-time, we refer the frame
by Boyer-Lindquist (BL) frame. Here we write
any contravariant vector by a*.

e Local laboratory (LOLA) frame

There is no popular terminology for this frame,
while it is useful. An observer on this frame
sees events locally, that is, only the events at the
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neighborhood. Furthermore, it is fixed to the lab-
oratory frame. In the frame (ct,7!,7?%,7%), the
line element is written as

(ds)? = —(cdl)* + Y _(di* ~ cB'dD)*,  (19)

where cdt = acdt, di' = hidz'. Therefore, the
covariant vector measured by ‘LOLA’ frame is
related with a* as

i’ =aad®, @' = hid'. (20)
The covariant vector by ‘LOLA’ frame is

- 1 - 1
ag = aao, a; = h—al (21)

T

¢ Fiducial observer (FIDO) frame

This is a locally inertial frame. Using the coordi-
nates of the frame (ct, 21,42, £), the line element

1S
(ds)? = —(cdi)? + ji:(d@i)z, (22)

where cdf = cdi, di* = di* — Bicdf. This is the
same as that of Minkovski space-time. The con-
travariant vector by ‘FIDO’ frame a* is

a®=a% a'=a'-a’gl (23)

With respect to covariant vector a,,, we find
ao=do+» Pa;, ai=a. (24)
i

It is noted that a° = —day and &* = a,.

e Comoving frame

Observer on this frame rides on the gas or the
plasma to see events locally. The quantity ob-
served by this frame is often called proper values
because it is dependent only on the nature of the
gas or plasma itself. Any scalar quantity is mea-
sured by this frame.

The components of vectors and tensors measured by
‘LOLA’ frame are given by equations (20), (21). To get
transformation of any tensor like ¢*¥ we just consider
the product of vectors like a#b”. Here, we denote these
components with tilde. ‘We find,

¥ =al®, (25)

vi = h—cU (26)

700 _ ag_TOO, (27)

P — %Tio _CﬂTol‘7 (28)

T9 = hh; T, (29)
. 1
Fyy = —Fyp = a—hiFOi, (30)
Fy=—Fy = ——F, (31)
17 1y — hih]‘ 17
~ 70 1 2 70
po = — =—-a°J", (32)
C &
Jt=ah;Jt. (33)

Usually we use physical variables measured by FIDO,
which are given by equations (23) and (24) as

y=7, (34)
D = 4p, (35)
=3t — e, (36)
€+ Dc? =T = T, (37)
Mmooz pe B 2
Pl=P - T = P - T (e+ D), (39)
T4 = T4 _ gi0i _ gifio . gigifoo (39)
Fio = —Fo=Foi+ y_ B Fy, (40)
j B
Fy = Fy, (41)
Pe = fe, (42)
Jt=Jt~ pecB’, (43)

where ¥ is Lorentz factor; 9 is three-velocity; € is en-
ergy density; and P is momentum density. We usually
write as v = ¥ and pe = fe.

The relationship between the variables measured by
FIDO is the same as that of special relativistic MHD.
Here, we summarize the relation.

D =ryp, (44)
1

7= = ; (45)

1- Zi:l (vl/c)‘
Pi=thyii s LExB 46
—C—QWU‘FCG(X)i, (46)
g .. [B? K2 ... EEI

_ 2,000
T”-—P5”+c—2’)’ UZUJ'F( 2 +§C_2> 6" —-B'B’ — e
(47)
32 2

e=hy—p—Dc+ 5 T 53 (48)

where h is the relativistic enthalpy density, h = pc® +
I'p/(T' = 1) = €jns + p. Here, the magnetic B and the
electric field E are defined as

. 1 .., -
Bz‘ = Z -2—6”ijk, (49)
i,k
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E’i = CFzO' (50)

There is relation as follows,

Ei=Ei+ €% cp By, (52)
3.k
where 1
Bi = Z Eéijkpjk, (53)
ik
E~i = CFiO. (54)

Using the FIDO variables, we derive the following set
of equations from the general relativistic conservation
laws of plasma and Maxwell equations (1)-(4) and (6).

BD 1 8 ahlh-)hg i .
- e 23 Dt i
ot hihsohs 21: 51t [ h; (0" +cB )} )
(55)
) 1 0 lahihohs , - .
—_— = e —— _ Tl] ]PL
8t h1h2h3 X]: 8mJ |: hj ( + Cﬁ ):l
1
—(e+ Dé? )h— N A Z Plo, (56)
de ahihshs gi
= | 2R — D+
6t hl h2h3 Z 8(131 [ h1 ( 'U + C 6)
1 Oa .
— 2 pt if g
Z P h 811 ;T Tijs (57)
~ e’ B, (58)
7.k
aBi —hi igk 9 # ki 1A
= U —— lah (B — BB
at hl h2h3 Z ¢ 81;,7 « I”(El” Z € Cﬁ m)
7k I,m
(59)
1 0 ([ hihs h3
— =0, 60
; hihahs ozt < h; ) ( )
_ 1 (84 8 hlhth N
Pe = Z 2 hihshsz Ozt < h; E'L> ’ (61)
1 3E
J* + pecB’ ta
hi  ip O . E,
¢k~ lahg | By am B
+j2k: et gz | M| B +lzn;6umﬁ - ;
(62)
where fciurv = z (GijTij - GjiTjj), G,jj = _h,llh]‘ 22;7

i Ow;
J - h Bz’ *
3+1 form, because the derivatives with respect to time

and o;;

This form of the equation is called

and space are separated completely (Thorne, Price, &
Macdonald 1986).

Through this is paper, we normalize the magnetlc
field B and electric field E so that B?/2 and E*/2¢*
present the magnetic and electric field energy density,
respectively. We also normalize the electric charge den-
sity pe and the electric current density J as the Lorentz
force density is given by p.E + J x B. For example,
the normalized variables used here are related with the
variables in MKSA unit system (SI unit system) as fol-

lows: B £
= , E= , 63
V1o \/ 1o ( )
pe =vope, I =yid", (64)

where a quantity with an asterisk is in the MKSA unit
system (SI unit system).

(d) Vector Form of GRMHD Equations

We introduce the derivatives in the three-vector and
scalar fields measured by FIDO. Here a and b are arbi-

trary three-vector fields and é is arbitrary scalar field
measured by FIDO. We list up the definitions as fol-

lows,
- 1 0 [hihshs
‘;hlhghzaxi< hi a)’ )

(V)i = —7-, (66)

(Vxa)=)» %e %(hka"), (67)

Lo b da’

[(b-V)a]; = Z [h Fyei Gy’ b +Gﬂa7b’} . (68)
J

Using these definitions, all formulae of the vector anal-

ysis can be used without modification except for the

following equation,

(Vxa)xb=

(b-V)a-—(Va)-b+[ab], (69)

where [(Va)-b); = Z] > e 947} and [a, b); = >;Gij (a9b*—

a b’). It is also noted with respect to a formula,

Vx(axb) = (V-b)a+(b-V)a—(V-a)b—(a-V)b, (70)
we often use more useful following equation of the com-
ponents,
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Using the derivatives of the three-vector and scalar
fields, we write the equations of GRMHD with compo-

nents (55)-(62) in the vector form,
9 _ ¢ .[aD( +¢B)] (72)
ot -
af’ S oS 2 2\ = al
5 = —V~[a(T+c@P)]—(e+Dc Wa+afew—P-o,
(73)
% = -V -[a(c*P - DV + ecB)] — (Va)-P*P-T:o0,
A (74)
aa—? = -V x [a(E - ¢f x B)], (75)
E . . N
J + pec + Z%ZVx[a(B—F%_ﬂ_XE)], (76)
V-B=0, (77)
. e
Pe = 0_2 ) E7 (78)
E+vxB=0, (79)

where 3 is three-vector with the components f;, g =

(81, B2, Bs)-

(e) Comparison of Conservative and Advec-
tive Form of Relativistic MHD Equations

We compare the usage of conservative and advective
form. To develop the GRMHD code from the special
relativistic MHD code, we just add some terms and fac-
tors with respect to the metric (h;, w;, and o;;) in the
time-boost part. It is straightforward and not so dif-
ficult. The difficulty in the development of relativistic
MHD code is in that of the special relativistic MHD
code. Therefore, here we consider the special relativis-
tic MHD. The conservative form of special relativistic
MHD is as follows,

oD
‘a—t =-V- (.DV)7 (80)
oP B* E? h o, EE
E__vi:<p+_2—+%z_)l+c_2/vv_BB_—c_2_:|
(81)
—g—z— = -V [®P - Dc*v], (82)
0B
= - E 83
- vxE, (83
E=-vxB, (84)
V- B =0, (85)
1
Pe = -C—’?-V Ea (86)
1 0E
J+ 'c—g"a—t‘ V x B, (87)

where | is the (3 x 3) unit tensor.

The equations with respect to the electromagnetic field
(83) - (87) are common in the both forms. The differ-
ent equations in advective form corresponding to the
equations (80) - (82) are

dD
EZ— =-DV- Vv, (88)

d (hyv
el =-Vp+p.E+JI xB
(o (pc2 ) D+ pe x B, (89)

) = T B(V ), (90)

where d/dt = 8/0t+(v-V) is the convective derivative.
It is easier to get primitive variables from the variables
boosted by the advective form than that by conserva-
tive form. However, in the advective form, we should
calculate the current density J. It is not so easy because
we have to treat the displacement current ¢ 20E/dt is
the Ampere law (87). Therefore, we use the convective
form for relativistic MHD 51mu1at10ns

III. NUMERICAL METHOD

We employ the simplified total variation diminishing
(TVD) method for GRMHD simulations (see Koide et
al. 1999, Appendix D), which was developed by Davis
(1984) for violent phenomena such as shocks. This
method is similar to Lax-Wendroff’s method with the
addition of a diffusion term formally. In order to in-
tegrate the time-dependent conservation laws, we need
only the maximum speed of waves and not each eigen-
vector or eigenvalue of the Jacobian of the linearized
GRMHD equations.

With the simplified TVD method, we obtain only

the quantities D, 13, e, and B directly at each step
from the difference equations. In the next step, we
must calculate the primitive variables v and p from D,
P, ¢, and B from equations (44),(45),(46), and (48). To
do th1s we solve two nonlinear, simultaneous algebraic
equations with unknown variables r=7F—-1landy =
ﬁ/((’ : B)/CQa

2

A r .
z(x + 2)‘[FR:53 + (TR -d)z +TR—d+u+ §y2

= (P22 +20z+1)%[f?(2+1)2 + 20y +20zy+b%y?], (91)

. . r
[D(R—b%)2 + (TR -2V ~d)e+ TR—-d+u—b"+ 54"ly

=o(z +1)(T'z? + 2Tz + 1), (92)

where R = D+¢é/c?,d = (I'-1)D,u = (1-T/2)B?/?,
f=P/c,b=B/c,and ¢ = B-P/c%. It is noted that in
the absence of the magnetic field equation (91) becomes

the equation in the relativistic hydrodynamic case, as
derived by Duncan & Hughes (1994), and equation (92)
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becomes a trivial equation. The equations are solved at
each cell using a 2-variable Newton-Raphson iteration
method. We then easily calculate p and Vv using =z,

y, D, 13, €, and B. This method is identical to that in
the special relativistic case (Koide, Nishikawa, & Mutel
1996; Koide 1997).

IV. FORMULAE FOR TEST PROBLEMS

We summarize the useful formulae for the test prob-
lems and check of the GRMHD code.

(a) Motion of Particle around Kerr Black Hole

We consider a neutral particle with the proper mass
m moving around the Kerr black hole. If no external
force acts on the particle, there are two kinds of con-
servation quantities. One is energy-at-infinity,

E*® = amc®y + wshamyo?, (93)
and the other is angular momentum
L = hgm~yo°. (94)
The energy-at-infinity is also written as
E® = aFl + wsL, (95)

where N .
E =mcy (96)

is the total energy of the particle observed by FIDO.
Let us consider the particle motion in the equatorial
plane. In the case, the co-latitude component of the
velocity is zero (g = 0) and the Lorentz factor of the
particle is written by

(97)

This satisfies the following inequality,

E® L\’ L
- > 1+(mch3> +w3m02:@(r), (99)

where the equal stands only for " = 0. The function
of r, ®(r) is the effective gravitational potential.

On the case with the zero angular momentum, L =
0, the equation (98) yields

EOO
— = —fo = ary = (const). (100)

This equation provide free fall velocity of the particle
into the Kerr black hole. In the Schwarzschild black
hole case, it gives

0= —a/=, (101)

when E® = mc?.

Motion of a particle in the circular orbit around the
central object is called Kepler rotation. Here we as-
sume the orbit is in the equatorial plane. The motion
is realized when 8®/9r = 0. The azimuthal component
of the velocity is given by

A Te  ar:
A _ ‘e 8 9
YK C\/A(r3 ~ria?) l r r2 ] ’ (102)

where the positive (negative) sign corresponds to the
case in which the particle rotates in the same (opposite)
direction as the black hole rotation. This velocity is
called Kepler velocity. We find that the velocity of the
opposite rotation case is larger than that of the coro-
tation case. It is noted that ﬁf’i is the velocity observed
by LOLA frame. The velocity by FIDO frame is given
by 9% = 0 — ¢4%. On the case of Schwarzschild black

hole (a = 0), the velocity is ﬁﬁ = +ch/2(r/rs — 1).
The orbit is unstable when 8@ /0r = 0 and 8*®/0r* <

0 or 8Lk /Or < 0, where Lk is the angular momentum
of the particle in Kepler rotation, Lx = hgmﬁﬁﬁ and
4 is Lorentz factor of the particle. The last stable orbit
is determined by 0Lk /dr = 0. On the Schwarzschild
black hole case (a = 0), the radius of the last stable
orbit is 7 = 3rs. On the maximumly rotating black
hole case (a = 1), the radius is » = 4.5rs when the par-
ticle rotates in the opposite direction of the black hole
rotation, while the corotating particle is always stable
when the particle rotates in the same direction.

(b) Penrose Process

We present a brief review of the Penrose process. We
consider the fission of a particle near the Kerr black
hole. For simplicity, we assume the particles move
only in the equatorial plane. When a particle ‘0’ is
injected into the region near black hole with the energy-
at-infinity ES° and the angular momentum Lg and the
fission of the particle produces two particles “1” and
“2” with the energy-at-infinity E{°, ES° and the angu-
lar momentum L, Ls, respectively. The conservation
laws of the energy and angular momentum are

Ey® = EX + B, (103)

Lo =Ly + Lo. (104)

If the particle “2” is recoiled by the fission strongly
and has the significant negative angular momentum,
the energy-at-infinity of the particle “2” becomes neg-
ative, ES°. Here we assume wg is positive. In such
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case, the energy-at-infinity of the particle “17 | E{® is
greater than that of the injected particle “0”, E§°, be-
cause of the conservation of the total energy-at-infinity
(103). On the other hand, the particle “2” is swallowed
by the black hole and the rotation energy of the black
hole decreases. This extraction process of the black
hole rotational energy is Penrose process. The condi-
tion for the negative energy-at-infinity is derived from
equations (103) and (104). When the relative velocity
of the two particles “1” and “2” is Awv, the condition is
written by
Av B¢ +vf/c
¢ 1+ B%vf/ ¢
where we consider only azimuthal fission. Because out-
side of the ergosphere, |3?| < 1, the right hand side
of the inequality (105) is less than unity. In the ergo-
sphere, 3¢ > 1 and the inequality is possible. When
B > 1, we get

1< (105)

Avﬁ + v /c

o < A g5 (106)

Even if the case with 8¢ = 0.5 (which correspond to
deep area in the ergosphere and near the event hori-
zon around the very rapidly rotating black hole), it
indicates Av > 0.5¢. This means the Penrose process
demands the relativistic fission.

(c) Wald Solution

We show steady uniform magnetic field around a
Kerr black hole in the vacuum, which is called Wald
solution (Wald 1974). The vector potential is

By
-
where By is constant indicating the magnetic field

strength. Here we use the Boyer-Lindquist coordinates
(20,21, 2%, 2%) =(ct, 7,6, $). This yields

rt — (arg)?)
55 g } (108)

- z
By = —%\/;sinﬁh — g

+%{(T2 + (arg)*)T + 2(arg)” cos® B(r* — (arg)”)}].
(109)

Au = 9u3 + 2a7'ggu0)7 (107)

(d) Frame-dragging Dynamo

The shear of the plasma flow observed by the Boyer-
Lindquist frame due to the frame dragging effect of the
rotating black hole causes the amplification of the mag-
netic field. This effect is called a frame-dragging dy-
namo (Yokosawa 1993; Meier 1999). With the assump-
tion that the azimuthal velocity component is zero, gen-
eral relativistic Faraday law of induction (59) and ideal

MHD condition (58) yield,

OB

8—t¢ = fiB. + f2 B, (110)
where he 8
' N3 w3
h=erar () (111)
_ h3 8 Wws
fo=cptes (—) (112)

It is noted that f2 is one order smaller than f; when
a ~ 1. The ridge of the f; profile is located near the
spherical surface, r = rg and the magnetic pressure has
a maximal near the surface. This phenomena is useful
for test problem of the GRMHD code.

The non-zero azimuthal component of the magnetic
field corresponds to the twist of the magnetic field lines.
This twist of the magnetic field line propagates outward
along the magnetic field lines as torsional Alfvén wave.
Alfvén velocity in the uniform plasma with the proper
mass density po and pressure pp and the uniform mag-
netic field Bg without the gravity is

By

VA =¢C . (113)
Vo2 +Tpo/(T - 1) + B2
The fast velocity is
Bg + Fp()
= - =. 114
v C\/pocz +Ipo/(T' = 1) + B3 (1)

When we put By = 0 in equation (114), it yields the
relativistic sound speed,

Ipo
Vs = . 115
ﬂ/p()c2 + fpo/(F — 1) ( )

(e) Transport Equations

First, we present conservation equations of energy
and angular momentum around Kerr black hole. The
Killing vectors for Kerr geometry are x¥ = (—1,0,0,0)
and n¥ = (0,0,0,—1). In general, any Killing vector ¢”
presents conservation laws,

JTW VIIglIT*6) = 0.0 (116)

Using ||g|l = ~(ahihahs)?, it becomes
0 70
ve) = hacT™€,
at( &) = hlhhgialahhzsc &)

(117)
When we use the Killing vector x*, we get the following
conservation law of energy,

Oe™

—r =~V (es), (118)
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where e = o€, is called energy-at-infinity density
and S = ch;T"¢, is energy flux density. Here we also
write these quantities as

e® = ale + Dc?) + Zwihif’i.,

i

(119)

St = al? Pt +e®cf + Z acFTY.
J

(120)

The quantities can be divided to components as follows,

e = o2, + e, (121)
S = St + Shan (122)

where
ekin - h7 —p +sz % )’Y‘U (123)

w _ [B* E? (B x B
€Em = a5 T 55 +Zw119 x B);, (124)

cBi 97 ; ;
ﬂ2 (0" + 8,
¢

Shn = oaby? [ 1+ (125)

J

i
Spm = &

(E - ¢B x B) x (}3+ch§>] . (126)

where the subscript ‘kin’ and ‘EM’ indicate the kinetic
and the electromagnetic components, respectively. With
respect to the Killing vector ¥, we have the following
conservation equation of angular momentum.

ol -
— = =V - (aM), 12
o =~V (aM), (127)
where | = oT%n, /c and M* = h;T%n,. Using the
_quantities measured by FIDO, we write
= hsP? (128)
and ° _ N o
M = hy(T™ 4 c8'P?). (129)

These variables are also divided into the kinetic and
the electromagnetic components denoted by the suffix
‘kin’ and ‘EM’, respectively as follows,

I = lkin + leM, (130)
Mkm + ]\4EM7 (131)
where o
lxin = h3 c—.z’YQf)B (132)
]7,3 ~ ~
lem = ?(E x B)s, (133)
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) . h 5., .4 i .
M, = hs [p&_ls 627 99 + ¢ = 'ygv } (134)
MIEDM =
B2 E2 i L EiES cﬂi R R
('2—+2—62>6 — B*B° — 2 +C—2(EXB)3

(135)
We can see that the kinetic energy-at-infinity and angu-
lar momentum densities (123) and (132) are similar to
those of one particle (93) and (94) respectively. When

we notice B2/2 + E2?/2¢? and E x B/c? correspond to
effective electromagnetic mass density and momentum
density in ZAMO frame, we find the similarity between
the electromagnetic energy-at-infinity, angular momen-
tum (124), (133) and those of one particle (93) and
(94). :

hs3

Next we present the transport equations of electro-
magnetic energy and momentum around Kerr black
hole. The general relativistic Maxwell equations (75)-
(78) yields,

0eS
ot

= V- (aSrm) —a(¥ +cB) - f,  (136)

alEM . 3

where fI, = peE + J x B is the Lorentz force den-
sity. Subtracting the both hands of the electromag-
netic transport equations (136), (137) from the conser-
vation equations (118), (127), respectively, we found
the kinetic transport equations of energy and angular
momentum,

= —@ . (QMEM) —

(137)

o0
Oeiin

el —V - (aSiin) + CY(_‘A’ +cB) -,

(138)

Olkin
ot
When we write the suffix ‘kin’ and ‘EM’ by ‘+’ and

.’ respectively, the transport equation of energy and
angular momentum are summarized as

=~V (aMyin) + hs fi. | (139)

02 V. (@Salrep) B, (10
Ol+ -~ 3
T —V - {(aMy) £ hsff, (141)

where the double signs are in same order.

V. A GRMHD SIMULATION OF JET FOR-
MATION

We show a GRMHD simulation of jet formation from
magnetized accretion disk around a rapidly rotating
(a = 0.95) Kerr black hole (Koide et al. 2000). The
simulations were performed for two cases in which the
disk co-rotates and counter-rotates with respect to the
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black hole rotation. Figures la-c illustrate the time
evolution of the counter-rotating disk case and Fig.
1d the final state of the co-rotating case. These fig-
ures show the proper mass density (gray-scale), velocity
‘(vectors), and magnetic field (solid lines) in 0 < R =
rsinf < Trg, 0 < z = rcosf < 7rg. The black region at
the origin shows the inside of the black hole horizon,
whose radius is g = 0.656rs. The initial state in the
simulation consists of a hot corona and a cold accretion
disk around the black hole (Fig. la). In the corona,
plasma is assumed to be in nearly stationary infall, with
the specific enthalpy h/pc? = 1+I'p/[(I' —1)pc?] = 1.3,
where specific heat ratio I' = 5/3. The accretion disk
is located at {cotd| < 0.125, r > 3rg and the initial
velocity of the disk is assumed to be the Kepler ve-
locity given by equation (102). Except for the disk
rotation direction, we use the same initial conditions in
both cases. The mass density of the disk is 100 times
that of the corona at the inner edge of the disk. The
mass density profile is given by that of a hydrostatic
equilibrium corona with a scale height of r. ~ 3rs.
The disk is in pressure balance with the corona, and
the magnetic field lines are perpendicular to the ac-
cretion disk. We use the azimuthal component of the
vector potential Ay of the Wald solution (107) to set
the magnetic field. Here the magnetic field strength
is By = 0.3,/pgc?, where pg is the initial corona den-
sity at r = 3rg. The Alfvén velocity and plasma beta
value at the disk (r = 3.5rg) are va = 0.03¢ and
B = 2p/B? ~ 3.4, respectively.

Figure 1b shows the state at ¢ = 307g, where 7g
is defined as 75 = rg/c. In the counter-rotating disk
case, there is no stable circular orbit at R < 4.4rg,
the disk falls into the black hole rapidly dragging the
magnetic field lines. The disk enters the ergosphere
and then crosses the horizon, as shown by the crowded
magnetic field lines near r = 0.75rs (Fig. 1c). The
jet is ejected almost along the magnetic field lines. Its
maximum total and poloidal velocities are the same,
9 = 0, = 0.44c at R = 3.2rs, z = 1.6rs. Inside the
ergosphere, the velocity of frame dragging exceeds the
speed of light (¢8%® > ¢), causing the disk to rotate
in the same direction of the black hole rotation (rel-
ative to the Boyer-Lindquist frame), even though it
was initially counter-rotating. The rapid, differential
frame dragging enhances the azimuthal magnetic field,
which is effect of the frame-dragging dynamo. This en-
hanced magnetic field pressure blows off the plasma
upward and pinches it into a powerful collimated jet.
In this case, the total energy-at-infinity density e™ is
positive everywhere and the extraction of the net en-
ergy of the Kerr black hole is not realized. On the case
with the very light disk, the negative energy-at-infinity
state may be realized by strong magnetic field and the
net energy extraction from black hole is possible like
Penrose process.

Figure 1d shows a snapshot of the co-rotating disk
case at t = 47rs. The disk stops its infall near

R = 3rg due to the centrifugal barrier with a shock at
r = 3.4rs. The high pressure behind the shock causes
a gas pressure-driven jet with total and poloidal veloc-
ities of & = 9, = 0.30c at R = 3.4rs, z = 2.4rg. The
centrifugal barrier makes the disk take much long time
to reach the ergosphere, which causes the difference be-
tween the co-rotating and counter-rotating disk cases.

VI. SUMMARY

In this paper, we present the whole basis of the
method of numerical simulations for general relativis-
tic MHD in Kerr space-time. We hope the readers use
this paper as a guide book or a handbook to develop
their own GRMHD code. We are planning to open one-
dimensional version of our GRMHD code for public as
a part of the ACT-JST project. Please visit the web
site (http://www.astro.phys.s.chiba-u.ac.jp /netlab/).
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while the infall of the disk in the co-
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rotating disk stops (due to a centrifugal barrier), the unstable orbits of the counter-

rotating disk plasma continue to spiral rapidly toward the black hole horizon. This

difference causes the magnetohydrodynamic jet formation mechanisms in the two

cases to differ drastically, resulting in a powerful jet emanating from deep within

the ergosphere.



