Studies on the active site of the Arabidopsis thaliana S-Adenosylmethionine Decarboxylase: $Lys^{81}$ residue involvement in catalytic activity

  • Park, Sung-Joon (Department of Biochemistry, College of Science, Yonsei University) ;
  • Cho, Young-Dong (Department of Biochemistry, College of Science, Yonsei University)
  • Received : 1999.10.18
  • Accepted : 1999.11.06
  • Published : 2000.01.31

Abstract

The Arabidopsis thaliana S-Adenosylmethionine decarboxylase (AdoMetDC) cDNA ($GenBank^{TM}$ U63633) was cloned, then the AdoMetDC protein was expressed and purified. The purified AdoMetDC was inactivated by salicylaldehyde in a pseudo first- order kinetics. The secondorder rate constant for inactivation was 126 $M^{-1}min^{-1}$ with the slope of n=0.73, suggesting that inactivation is the result of the reaction of one lysine residue in the active site of AdoMetDC. Site-specific mutagenesis was performed on the AdoMetDC to introduce mutations in conserved $lysine^{81}$ residues. These were chosen by examination of the conserved sequence and proved to be involved in enzymatic activity by chemical modification. Changing $Lys^{81}$ to alanine showed an altered optimal pH. The substrate also provided protection against inactivation by salicylaldehyde. Considering these results, we suggest that the $lysine^{81}$ residue may be involved in catalytic activity.

Keywords