ASYMPTOTIC PROPERTIES OF NONEXPANSIVE SEQUENCES IN BANACH SPACES

  • Park, Jong An (Department of Mathematics Kangwon National University) ;
  • Park, Yang Seob (Department of Mathematics Kangwon National University)
  • Received : 2000.05.30
  • Published : 2000.09.28

Abstract

B.Djafari Rouhani and W.A.Kirk [3] proved the following theorem: Let Xbe a reflexive Banach space and $(x_n)_{n{\geq}0}$ be a nonexpansive (resp., firmly nonexpansive )sequence in X. Then the set of weak ${\omega}$-limit points of the sequence $(\frac{x_n}{n})_{n{\geq}1}$(resp., $(x_{n+1}-x_n)_{n{\geq}0$) always lies on a convex subset of a sphere centered at the origin of radius $d={\lim}_{n{\rightarrow}{\infty}}\frac{{\parallel}x_n{\parallel}}{n}$. In this paper we show that the above theorem for nonexpansive(resp., firmly nonexpansive) sequences holds in a general Banach space(resp., a strictly convex dual $X^*$).

Keywords