나선축 개념을 이용한 팔꿈치 관절의 3차원 회전축 측정과 측정 결과를 반영한 인체 팔 모델의 개발

Determination of the Elbow Transverse Joint Using the Helical Axis Concept and its Application to the Development of a Kinematic Arm Model

  • 우범영 (포항공과대학교 산업공학과) ;
  • 정의승 (고려대학교 산업공학과) ;
  • 윤명환 (포항공과대학교 산업공학과)
  • 발행 : 2000.03.31

초록

To determine the exact direction and location of the human joint in motion is crucial in developing a more accurate human model and producing a more fitting artificial joint. There have been several reports on the biomechanical analysis of the joint to determine the anatomy and movement of joints. However, all the previous researches were made in vitro study, that is, they investigated the passive movement of the joint from cadavers and the suggested location of the joint axis was difficult to make practical applications due to the lack of the direction of joint axis. Also, in many biomechanical models, each joint axis is assumed to lie horizontally or vertically to the adjacent links. Such an assumption causes inherent inaccuracy. In this study, the direction and location of the transverse elbow axis was obtained with respect to the global coordinate system whose origin is on the lateral epicondyle of the humerus. The suggested result based on the global coordinate system lying on the external landmark will be helpful to understand the information of the axis and to make an application. From the experiments conducted for five subjects, the direction and location of the elbow transverse joint was determined for each subject by the helical axis method. A statistical validation was also performed to confirm the result. Finally, the result was applied to develop a simple elbow model which is a part of the kinematic arm model. The simple elbow movement model was developed to validate the significance of the result and the kinematic arm model was able to describe the geometry of any complex linkage system. As a result, the errors incurred from the proposed model were significantly reduced when compared to the ones from the previous approach.

키워드