밀리미터파 대역 차량용 레이더를 위한 순서통계 기법을 이용한 다중표적의 데이터 연관 필터

Multi-target Data Association Filter Based on Order Statistics for Millimeter-wave Automotive Radar

  • 이문식 (광주과학기술원 기전공학과 센서시스템연구실) ;
  • 김용훈 (광주과학기술원 기전공학과 센서시스템연구실)
  • Lee, Moon-Sik (Sensor System Laboratory, Department of Mechatronics, K-JIST) ;
  • Kim, Yong-Hoon (Sensor System Laboratory, Department of Mechatronics, K-JIST)
  • 발행 : 2000.09.25

초록

차량 충돌 경보용 레이더 시스템의 개발에 있어 표적 추적의 정확도와 신뢰도는 매우 중요한 요소이다. 여러 표적을 동시에 추적할 때 중요한 것은 표적과 측정치와의 데이터 연관(data association) 이며, 부적절한 측정치가 어느 표적과 연관되면 그 표적은 트랙을 벗어나 추적능력을 잃어버릴 수 있고 심지어 다른 표적의 추적에도 영향을 줄 수 있다 지금까지 발표된 대부분의 데이터 연관 필터들은 근접하여 이동하는 표적들의 경우 이와 같은 문제점을 보여왔다 따라서, 현재 개발되고 있는 많은 알고리즘들은 이러한 데이터 연 관 문제의 해결에 초점을 맞추고 있다 본 논문에서는 순서통계(order statistics)를 이용한 새로운 다중 표적의 데이터 연관 방법에 대하여 서술하고자 한다 OSPDA와 OSJPDA로 불리는 제안된 방법은 각각 PDA 필터 또는 JPDA 필터에서 계산된 연관 확률을 이용하며 이 연관 확률을 결정 논리(dicision logic)에 의한 가중치로 함수화 하여 표적과 측정치 사이에 최적 혹은 최적 근처의(near optimal) 데이터 연관이 가능하도록 한 것이다 시뮬레이션 결과를 통해, 제안한 방법은 기존의 NN 필터, PDA 필터, 그리고 JPDA 필터의 성능과 비교 분석되었으며, 그 결과 제안한 OSPDA, OSJPDA 필터는 PDA, JPDA 필터보다 추적 정확도에 대해 각각 약 18%, 19% 이상으로 성능이 향상됨을 확인하였다 제안한 방법은 CAN을 통해 차량 엔진 등의 ECU와 통신하도록 개발된 DSP 보드를 이용하여 구현되었다

The accuracy and reliability of the target tracking is very critical issue in the design of automotive collision warning radar A significant problem in multi-target tracking (MTT) is the target-to-measurement data association If an incorrect measurement is associated with a target, the target could diverge the track and be prematurely terminated or cause other targets to also diverge the track. Most methods for target-to-measurement data association tend to coalesce neighboring targets Therefore, many algorithms have been developed to solve this data association problem. In this paper, a new multi-target data association method based on order statistics is described The new approaches. called the order statistics probabilistic data association (OSPDA) and the order statistics joint probabilistic data association (OSJPDA), are formulated using the association probabilities of the probabilistic data association (PDA) and the joint probabilistic data association (JPDA) filters, respectively Using the decision logic. an optimal or near optimal target-to-measurement data association is made A computer simulation of the proposed method in a heavy cluttered condition is given, including a comparison With the nearest-neighbor CNN). the PDA, and the JPDA filters, Simulation results show that the performances of the OSPDA filter and the OSJPDA filter are superior to those of the PDA filter and the JPDA filter in terms of tracking accuracy about 18% and 19%, respectively In addition, the proposed method is implemented using a developed digital signal processing (DSP) board which can be interfaced with the engine control unit (ECU) of car engine and with the d?xer through the controller area network (CAN)

키워드

참고문헌

  1. Y. Bar-Shalom, Multitarget-Multisensor Tracking Advanced Applications, Artech House, 1990
  2. B. Zhou and N K. Bose, 'Multitarget tracking in clutter: fast algorithms for data association', IEEE Transaction on Aerospace and Electronic Systems, Vol 29, No. 2, pp. 352-363, Jul. 1989 https://doi.org/10.1109/7.210074
  3. S S. Ahmeda, M. Keche, I. Harrison, and M. S Woolfson, 'Adaptive joint probabilistic data association algorithm for tracking multiple targets in cluttered environment', IEE Proc.-Radar, Sonar Navig , Vol 144, No. 6, pp 309-314, Dec. 1997 https://doi.org/10.1049/ip-rsn:19971585
  4. Y. Bar-Shalom and Thomas E Fortmann, Tracking and Data Association, Academic Press, 1988
  5. H. Leung, Z Hu, and M. Blanchette, 'Evaluation of multiple radar target trackers In stressful environments', IEEE Transaction on Aerospace and Electronic Systems, Vol. 35, No. 2, pp 663-674, Apr 1999 https://doi.org/10.1109/7.766946
  6. J. A. Roecker, 'A class of near optimal JPDA algorithms', IEEE Transaction on Aerospace and Electronic Systems, Vol. 30, No 2, pp. 504-510, Apr. 1994 https://doi.org/10.1109/7.272272
  7. Z Ding and L. Hong, 'Bias phenomenon and compensation for PDA/JPDA algorithms', Mathl. Comput. Modeling, Vol. 27, No. 12, pp. 1-16, 1998 https://doi.org/10.1016/S0895-7177(98)00070-3
  8. T E. Fortmann, Y. Bar-Shalom, M. Scheffe, 'Sonar tracking of multiple targets using joint probabilistic data association', IEEE J. of Oceanic Engineering, Vol OE-8, No. 3, pp. 173-184, Jul. 1983 https://doi.org/10.1109/JOE.1983.1145560
  9. J. L. Fisher and D. P. Casasent, 'Fast JPDA multitarget tracking algorithm', Applied Optics, Vol. 28, No. 2, pp 371-376, Jan. 1989
  10. J A. Roecker, 'Approximate joint probabilistic data association algorithms', SPIE, Vol.1954, pp. 331-340 https://doi.org/10.1117/12.157774
  11. E. A. Bloem and H. A. P. Blom, 'Joint probabilistic data association methods avoiding track coalescence', Proceeding of the 34th Conference on Decision & Control, 1995, pp 2752-2757 https://doi.org/10.1109/CDC.1995.478532
  12. Y Bar-Shalom, Xiao-Rong Li, Estimation and Tracking, Artech House, 1993
  13. R. E Kalman, 'A new approach to linear filtering and prediction problems', Journal of Basic Engineering (ASME), Vol. 82D, pp. 35-45, Mar l960
  14. C. K. Chui and G. Chen, Kalman Filtering, Springer-Verlag, 1991
  15. Gum-Sil Kang, Yong-Hoon Kim, and Moon-Sik Lee, 'A study on the development of signal processing system of 77 GHz FMCW automotive radar', Proc. of KICS conference, Korea, Jul. 9-10, 1998, pp 722-726
  16. Moon-Sik Lee and Yong-Hoon Kim, 'Development of multiple vehicle tracking system for automotive radar', 1999 International Conference on Mechatronic Technology, Pusan, Korea, Oct, 21-23, 1999, pp 468-473
  17. A. G. Stove, 'Linear FMCW radar techniques', IEE Proceedings-F, Vol 139, No. 5, pp 343-350, Oct 1992
  18. Yong-Hoon Kim and Moon-Sik Lee, 'Accurate tracking of multiple targets for millimeter-wave automotive radar In heavy cluttered environment', The Second International Symposium on Wireless Personal Multimedia Communications, Amsterdam, The Netherlands, Sep, 21-23, 1999, pp. 106-111
  19. M Shor and N Levanon, 'Performances of order statistics CFAR', IEEE Transaction on Aerospace and Electronic Systems, Vol 27, No. 2, pp 214-224, Mar 1991 https://doi.org/10.1109/7.78295
  20. H. Rohling, 'Radar CFAR thresholding In clutter and multiple target situations', IEEE Transaction on Aerospace and Electronic Systems, Vol AES-19, No. 4, pp 608-621, Jul 1983 https://doi.org/10.1109/TAES.1983.309350
  21. N Levanon, M. Shor, 'Order statistics CFAR for Weibull background', IEE Proceedings, Vol 137, Pt F, No 3, pp 157-162, Jun. 1990