2차원 이산 웨이브렛 변환을 위한 효율적인 VLSI 구조

Efficient VLSI Architectures for the Two-Dimensional Discrete Wavelet Transform

  • 반성범 (서강대학교 전자공학과/한국전자통신연구원 멀티미디어연구부) ;
  • 박래홍 (서강대학교 전자공학과) ;
  • 지용 (서강대학교 전자공학과)
  • Pan, Sung-Bum (Dept. of Electronic Engineering, Sogang University/Electronics and Telecommunications Research Institute) ;
  • Park, Rae-Hong (Dept. of Electronic Engineering, Sogang University) ;
  • Jee, Yong (Dept. of Electronic Engineering, Sogang University)
  • 발행 : 2000.01.25

초록

본 논문은 2차원 DWT 계산을 위한 효율적인 VLSI 구조를 제안한다 제안한 두 개의 구조는 $M{\times}N$ ($N{\times}M$) 블록 단위로 2 D DWT를 계산한다 각각의 블록에서 2 D DWT의 계산은 행 (열) 방향으로 동시에 계산한다 M은 필터 탭 수를 나타내고 N은 열 (행)을 나타낸다 그리고 행과 열 방향으로 1차원 DWT를 계산할 때 저주파와 고주파 성분을 하나의 구조에서 번갈아 계산하도록 하였다 그러므로 제안한 구조는 기존의 구조에 비해 부가적인 처리 유닛이 적게 필요하다 VHDL를 이용하여 모델링하고 시뮬레이션하여 제안한 구조가 정상적으로 동작함을 확인하였다.

This paper proposes efficient VLSI architectures for computation of the 2- D discrete wavelet transform (DWT). The two proposed VLSI architectures for the 2- D DWT are constructed based on block-based computation Each $M{\times}N$ ($N{\times}M$) block DWT is performed along the row (column) direction simultaneously, where M and N denote the number of filter taps and the number of columns (rows), respectively The proposed architectures compute the lowpass and highpass output sequences of the 1 - DWT along the row and column directions using a single architecture In alternate clock cycles Therefore the extra processing units required for the proposed architectures are much smaller than those of the conventional architectures They are modeled In very high speed Integrated circuit hardware description language (HIDL) and Simulated to show their functional validity.

키워드

참고문헌

  1. S. Mallat, 'Mulufrequency channel decomposinons of images and wavelet models,' IEEE Trans. Acoust, Speech, Signal Process, vol ASSP-37, no.12, pp 2091-2110, Dec 1989 https://doi.org/10.1109/29.45554
  2. O. Rioul and M. Vetterli, 'Wavelets and signal processing,' IEEE Signal Processing Magazine, vol 8, no. 4, pp 14-38, Oct. 1991 https://doi.org/10.1109/79.91217
  3. A S Lewis and G. Knowles, 'VLSI architecture for 2-D Daubechies wavelet transform without multipliers,' Electron Lett, vol. 27, no 2, pp. 171-173, Jan. 1991 https://doi.org/10.1049/el:19910110
  4. K. K. Parhi and T. Nishitam, 'VLSI architectures for discrete wavelet transform,' IEEE Trans. VLSI Systems, vol. 1, no 2, pp. 191-202, June 1993 https://doi.org/10.1109/92.238416
  5. M. Vishwanath, R. M Owens, and M. J. Irwin, 'VLSI architectures for the discrete wavelet transform,' IEEE Trans. Circuits Systems, vol. CAS-42, no. 5, pp.305-316, May 1995 https://doi.org/10.1109/82.386170
  6. C. Chakrabarti and M Vishwanath, 'Efficient realizations of the discrete contmuous wavelet transforms: From single chip implementations to mappings on SIMD array computers,' IEEE Trans. Signal Processing, vol. SP-43, no. 3, pp 759-771, Mar. 1995 https://doi.org/10.1109/78.370630
  7. 장시중, 김대용, 김순영, 이문호, '정규직교 이산웨이브렛을 위한 효율적인 VLSI 구조', 한국통신학회 논문지, 23권, 제 1호, 239-252, 1998년 1월
  8. T C Denk and K. K. Parhi, 'VLSI architectures for lattice structure based orthonormal discrete wavelet transforms,' IEEE Trans Circuits Syst II, vol. CAS-44, no. 2, pp 129-132, Feb 1997 https://doi.org/10.1109/82.554448
  9. J. Fridman and E. S. Manolakos, 'Discrete wavelet transform: Data dependence analysis and synthesis of distributed memory and control array architectures,' IEEE Trans. Signal Processing, vol SP-45, no 5, pp. 1291-1308, May 1997 https://doi.org/10.1109/78.575701
  10. S.-K. Paek and L -S. Kim, '2D DWT VLSI architecture for wavelet Image processmg,' Electron. Lett., Vol. 34, no. 6, pp 537 -538, Mar. 1998 https://doi.org/10.1049/el:19980387
  11. C. Yu and S.-J. Chen, 'VLSI implementation of 2-D discrete wavelet transform fo real-time video signal processing,' IEEE Trans. on Consumer Elec., vol. 43 no 4, pp 1270-1279, Nov. 1997 https://doi.org/10.1109/30.642396
  12. S. B. Pan and R.-H. Park, 'New systolic arrays for computation of the 1-D discrete wavelet transform,' in Proc IEEE Int. Conf, Acoust., Speech, Signal Processing, Mumich, Germany, pp. 4113-4116, Apr 1997 https://doi.org/10.1109/ICASSP.1997.604851
  13. H. T Kung, 'Why systolic architectures?,' IEEE Computer, vol. 15, no 1, pp.37-46, Jan. 1982
  14. D. L. Perry, VHDL. 2nd Ed, Singapore McGraw-Hill, 1991