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Abstract This paper suggests an efficient reachability analysis method of bounded petri nets.
Reachability analysis is a fundamental basis for studying the dynamic properties of any discrete event
systems. However, it takes at least exponential execution time and memory space to verify in general
petri nets. That is, state space explosion problem may occur. In this paper, we attack problems of
previous approaches - state space explosion and restrictions to applicable petri net classes - by
formulating the reachability problem as set operation over structural relations among places on an
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unfolding.

1. Introduction

Petri Nets(PNs) are widely recognized as a
powerful model for communication protocols, con-
current and parallel programs, flexible manu-
facturing/industrial control systems and especially
discrete event systems characterized by asynchronous
and concurrent evolution[1]. For correct modeling and

analysis of PNs, describing discrete event systems,
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deadlock-freeness, liveness, safeness, boundedness
and reachability may be checked. In particular,
reachability analysis is one of the most fundamental
problems among analysis problems of discrete event
systems. However, PN based reachability analysis is
an intractable problem due to exponential execution
time and memory space in the general case. Previous
approaches to reachability analysis may be classified
into following three groups; (1) the reachability
graph(RG) method (2) the matrix equation approach,
and (3) methods using structural characteristics such
as SM-components, handles etc.[2]. The RG method
is the most explicit method but it may suffer from
state space explosion, i.e. the number of states of the
RG may grow exponentially with the number of
transitions due to the inherent concurrency of PNs.
The matrix structural

equation approach and
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characteristic based method have severe restrictions
in applicable PN classes.

Recently binary decision diagrams(BDDs) and
unfoldings have been proposed for representing state
space of PNs efficiently [3][4]. However, since BDDs
can not be derived from k-bounded PNs without
knowledge of PNs’' upperbound k, the BDD based
method still has restriction in applicable PN classes.
On the other hand unfolding, which was introduced
by McMillan for the first time, has no restriction to
its applicability other than unboundedness([4].
Moreover, since it is based on partial order semantics,
there is no state space explosion problem inherently.
Miyamoto et. al[5][6] made the first attempt to
perform reachability analysis on unfoldings through
characterizing it into a maximal complete subgraph
division and achieved noticeable experimental results.
However, in the worst case, when a given marking is
not in a PN, their method should explore all the state
space and hence it requires tremendous time. In this
paper, we attack problems of previous approaches -
state space explosion and restrictions of applicable PN
classes - by formulating the reachability problem as
set operation over structural relations among places
on unfoldings. Since the suggested method in this
paper decides a reachability of a given marking
through a sequence of set computations among places
in the marking, it is always performed without
exploring the whole space. Therefore, although our
approach still takes exponential time complexity, it
can carry out reachability analysis quickly compared
to previous approaches for most PNs. Moreover, it
can be adopted for submarking reachability analysis.
Therefore, it is very beneficial in the pragmatic
show its usefulness with

viewpoint and we

experimental results.

2. Basic Definitions

In this section we introduce PNs and unfoldings,
which are used as intermediate models for PN
analysis.

2.1 Petri Nets
Definition 2.1 (Petri Net) A Petri Net is a 4-tuple
s=(P,T.F,M;), where P is the set of places, T is the

set of transitions, FE(PxDIUTxP), such that
dom(F)Urangel H=PUT, M, is the initial marking
represented by a |Ax1 column vector. By firing of a
series of transitions, ¢, a marking M changes into
M’, denoted by M[s>M’. The set of reachable
markings from M is denoted by [M>.

We use dot notations to represent the preset and
postset of a place or a transition as follows;

(i) - #¢-) is the set of input(output) places of t.

(i) - Hp-) is the set of input(output) transitions of p.

2.2 Unfoldings

In prior to defining unfoldings, we need to
introduce OCNs on which unfoldings are based.
OCNs, which are kind of acyclic PNs, can be derived
from PNs by Algorithm 2.1.

(b)

Fig. 1 (a) Petri Net (b) Unfolding

Algorithm 2.1(Generation of an OCN)
[Stepl] Copy every place p; such that My(p)=1 into
the OCN.
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[Step2] Choose a transition ¢ from the PN.

[Step3] For each place in - &, find a copy in the OCN.
If a copy can not be found, go back to Step2. Do
not choose the same subset more than once for a
given t.

[Stepd] If any pair of chosen places is not in
concurrent relation, go back to Step2.

[Step5] Make a copy of ¢ in the OCN. Call it £,
Draw an arc from each place which was found in
Step3 to £.

[Step6] For each place in t;-, make a copy in the
OCN and draw an arc from £ to it.

[Step7] Repeat Step2-Step6 as many as possible.
In an OCN, P, T and M denote sets of places,

transitions and markings corresponding to P, T and

M in a PN respectively. In an OCN, a node in a PN

can occur several times and j~th appearances of node

p» and ¢ are denoted as p} and (=1, 2, 3..)

respectively. OCNs, which are based on partial order

semantics and acyclic, are greatly helpful to
investigate behavior of concurrent systems. An OCN
represents acyclically all possible processes occurring
in a given PN. Thus an OCN may expand infinitely,
even though a given PN is bounded. This means that,
at least in bounded cases, every possible process
appears repeatedly in an OCN. It was proved that

global states can also be defined in an OCN and a

complete prefix, called unfolding of an OCN preserves

the state space of a PN[4][7]. Hence an unfolding is
very useful to analyse a PN without experiencing

state space explosion. Fig. 1 shows a PN and a

corresponding unfolding. For the lack of space, a

formal definition of an unfolding is omitted here.

Please refer to [4] and [7] for the related definitions.

Definition 2.2 (Ordering Relations) Let S=(P, T.F, M)

be an acyclic PN or an OCN and «x,, x,ePUT.

(i) x, precedes x,, denoted by x=x,, if(x;, x,) belongs
to the reflexive transitive closure of F, i.e. there is
a directed path in 2 from x to x. x is in
precedence relation with itself.

(ii) x, and x, are in conflict, denoted by x# x,, if there

distinct

exist transitions 4, =T such that

1N -6+, and t=x,, and t=x,.
(iii) x, and x, are concurrent, denoted by xllx,, if they

are neither in precedence nor in conflict.

3. Reachability Characterization and a
Pragmatic Solution on Unfoldings

In this section, we introduce a reachability problem
and explain in detail how to solve it efficiently on
unfoldings with the suggested approach.

3.1 A Reachability Problem in Petri Nets

As previously mentioned, reachability analysis of
the PN is among the most important analyses of a
system modeled by the PN. A sequence of fired
transitions results in a sequence of markings. A firing
or occurrence sequence is denoted by o= Myty Maty
Maby... t,Myury OF SIMPly o= 4 4 &... ¢,. A reachability
problem in PNs is as follows;

Problem 3.1 For a given marking M of a PN, is a
marking M reachable from an initial marking M,? or
is there ¢ such that Mlo> M?

For example, a marking M={ #;, ps} of the PN in
Fig. 1 is reachable from the initial marking M,={ »,,
12} through a firing sequence o= 4 #, ie, Ml a
>M.

3.2 Solving a Reachability Problem Using

Unfolding Based Method
Definition 3.1 For any place p; in an unfolding, the
union of p; and places in the concurrent relation with
#; is defined as v,. Thatis, v,={#} U{ sal ra and ;
are in the concurrent relation, k=1..n}.

For example, for a place p; of the unfolding in Fig.
1), v, is {sl, #, #). Since structural relations
between any two places on an unfolding can be
obtained during building it, Y, is easy to obtain.
Proposition 3.2 The set of places in the maximal
concurrent relation on an unfolding corresponds to a
marking of PN or its unfolding[8].

[Proof] Trivial |

In this paper, sink transitions are not considered,
since they are not suitable for a marking concept in
Proposition 3.2. However, although there exist sink

transitions, we can apply the same reachability
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analysis procedure suggested in this paper by

replacing sink transitions with dummy places.

Therefore, we assume that PNs have no sink

transitions for the convenience of explanation.

Proposition 3.3 For any marking M ={ i, »5, .., %

in an unfolding, Y,N v,N..N0 Y= M. Moreover, for

a multiset of places in the unfolding, { »3, »%, ..., %},

if YuNyeNn.nv.={s, #5 .. o), there exists a

marking M'={p}, »%, .., v} in the unfolding.

[Proof] Firstly we prove the first argument. Assume

that there exists a place pi which belongs to ¥, N

Y zN..N Y but does not belongs to { »}, #%, ..., vii}

Since p2 is in YN Y,N..N Y, it is concurrent

with all p2(a=%b, a, b=1.k). Therefore, all the places

in {2, #4 ..., pi} are not in the maximal concurrent

relation. This implies that { ], %, .., %) is not a

marking from Proposition 3.2. This is a contradiction

to the assumption and hence Y, N ¥,N...N Y, C{ 43,

#2, .., %}, Next, we assume that a place #2 in { p},

#%, ..., p%) does not belong to Y0 v,0..N Y,

According to Proposition 3.2, % is in concurrent

relation with all the places in { p}, #%, .., #i} except

for itself. Therefore, »2 belongs to all Y,-(m=1.k)s
and hence is also in YN vY,N..N Y, Therefore,

{(#3, 2%, .., PRYC ¥,N Y ,2N..N ¥, From the above,

YN YN N Ya=(pl, 55 .., #h)

We now prove the second argument. Notice that
{p2, % .., p%} cannot have the same places in this
case although it is a multiset. Assume that YN ¥
N..N Y=l pd, 25 .., pi}is satisfied but {2}, 23, ..,
v} is not a marking in the unfolding. According to
Proposition 3.2, since a marking of an unfolding is a
set of places in the maximal concurrent relation, only
the following two cases can be considered;

(case 1) There exist two places, #Z and #3, which
are not in the concurrent relation, in {4}, 2%, ..,
ri}.

(case 2) Any two places in {#3, 2§, .., 24} are
concurrent with each other but there exists a place
p which is concurrent with all the places in { »], »%,

.., #%} but does not belong to { s}, p5, .., sk} In
the case 1, since p% and #% are places in { p}, 25,
v DEY YN YN0 Ye={8], b8, ..., pi) implies
that Y ,and Y, contain p} and #} respectively and
2% and p2 are in the concurrent relation with each
other. Therefore, case 1 is impossible. In case 2,
since p is concurrent with all the places in { #3, #%,
N AN Y, s(a=1.%).

Therefore, it belongs to YN Y, :N...0 ¥ ={s],

belongs to all the

2%, ..., v} and the case 2 is also impossible. Hence,
the assumptions are contradictory. Therefore, if
YN YuN..N Ya={s), 5 .., vi}, the marking M

=(p1, 13, ..., Pk} exists in the unfolding. [ |

As mentioned in Proposition 3.2, a marking M in
an unfolding is a set of places in the maximal
concurrent relation. That is, there is no set of places
where all places are concurrent with others and
includes M. Proposition 3.3 gives a way to check
concurrency and maximality in the same time through
set operations of Y,’s. For example, for a marking
M={p, i} of an unfolding in Fig. 1(b), YN v,=
{88, o, #iI0{sl, ol 8, 2}={#}, 5} is satisfied
Moreover, for the set of places, { s}, »i}, Y, N Y,=
(o], b, 2i0{sl, 25, 2, 2}={sl, s} is satisfied.

Therefore, the marking {», 5} exists in the
unfolding.

Theorem 3.4 In a PN with an initial marking M, a
destination marking M={ p;, #z, ..., pa} is reachable
from M, iff a multiset of places, { 4%, #%, .., 2%} such
that ¥,0 ¥YN..0 Y ,a={ 2}, 85, .., #4} exists in the
corresponding unfolding.

[Proof] If M is reachable from an initial marking #,,
there exists a marking M reachable from the initial
marking M, in the unfolding, where M, and M
correspond to M, and M respectively. We assume
that a multiset of places, {s3, 23, .., r%} such that
YN YeN..NY={pl, »35 .., »il exists in the
corresponding unfolding. If ¥,N v,N...N ¥,={4],

25, ..., p%) is satisfied, a marking M={p}, #%, .., pik}
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exists in the unfolding according to Proposition 3.3.
For M, M is reachable from an initial marking M,
and this implies that the marking M is reachable from
the initial marking M,.

The following two examples explain how Theorem
3.4 can be applied to reachability analysis. For a set
of places, { 2, 5}, of a PN in Fig. 1, since v N Y=
{28, 8308, o, oi}={5, #8), {4, 25} is reachable
from the initial marking. As the second example, we
consider whether { ;, #5} is reachable or not. For all
the pairs of places corresponding to p; and ps, since
YaN Yu={si, 5, 2idN{sh, 2f, pi}={2}, pi} and v,N
Y.={0, 05, 0i}N{s, 0, ri}=0, we can conclude
that { #3, 5} is not reachable from the initial marking
by Theorem 34.

An algorithm to decide the reachability by using
Proposition 3.3 and Theorem 3.4 is given below;
Algorithm 3.1 (Reachability analysis algorithm based
on unfoldings)

[variable]

M={ ps, pg.., pa) - a target marking

P,={ il n=1, 2, } a set of places in an unfolding
corresponding to a place s, a = 1.k, in a PN,
[Stepl]

respectively and make a multiset P={p}, 5%, ..,

Select each place from P;, P, .. Pa

#%} of places. If P, was made previously, throw it
away and build a new multiset. If we cannot get a
new P, a given marking M is not reachable.
[Step2] If YN Y,3N...N Y= P, the given marking M
is reachable. Otherwise, drop P, and return to Stepl.

The time complexity of Algorithm 3.1 is
PPyl .| Pyl). Although it is still exponential, if the
size of |PJ is small, the time complexity does not
matter. The experimental results in section 4 shows
that the size of |P,} is between 1 and 2 in most cases.
Therefore, the
reachability rapidly for most PNs without state space

suggested method can decide

explosion. Moreover, although the sizes of |P,s are a

little big, heuristics based on submarking reachability

analysis and structural relations among places can
reduce reachability analysis time efficiently. Since
heuristics are not main topics of this paper, we do not
explain them in detail.

Corollary 3.5 For any multiset of places, S={ p1, p2,
.., px} in a PN, a marking M, where all places in S
have tokens in the same time, is reachable from an
initial marking M,.©The multiset of places, { s}, #%,

s P}, such that { o, 28, .., YIS Y uN Y NN Y,

exists in a corresponding unfolding.

[Proof =] Without losing generality, we assume that
a marking M corresponding to M in an unfolding
includes { #2, #%, ..., p}. According to proposition 3.2,
all the places in {3, »% .. »pk} are in concurrent
relations with others. Therefore, any place 2 in { »%,
T Y,(1=1.k)s and = is
satisfied. |
[Proof =] We assume that any two places 2 and

#4)} belongs to all

2% which are not concurrent with each other, exist in
{1, 2%, .., #i). Since {p}, #5, ., PEIS Y, N ¥, 0.
N Y, is not satisfied under the assumption, the
assumption is wrong. That is, any two places in { #],
95, ..., p%} are in concurrent relation. This fact implies
that there exists a marking M where all places in
(o1, 28, ..

marking M corresponding to M is

#%} have a token simultaneously. A
reachable
according to the definition of unfoldings and all places

in S have a token under the marking M. Hence <« is

satisfied. [ ]

Corollary 3.5 presents a way to decide submarking
reachability through a minor modification of Theorem
34 and hence we can decide both reachability and
submarking reachability simultaneously according to
Corollary 3.5.

4. Experimental Results

Here, we claim that the suggested method is very
beneficial in the following two aspects;
® to solve a reachability problem of any bounded
PNs.

® to be competitive or superior to previous
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Table 1 Size Comparison between Petri Nets and Unfoldings

Example PN Unfolding Unfolding Example PN Unfolding Unfolding
(pl+tr) (pl+tr) / PN (pl+tr) (pl+tr) / PN
sendr-done 17 17 1 hybridf 42 75 1.79
hazard 2 22 1 wrdatab 57 81 142
fair-arb-sg 33 47 1.424 nbelOb 54 102 1.88
half 19 21 1.42 master-read 68 128 1.88
pla 18 24 1.33 pe-send-ifc 114 124 1.08
qrd? 30 30 1 mp-forward-p 42 45 1.07
sbuf-read-ctl 35 38 1.09 rcv-setup 29 29 1
fair-arb-sg-jo 52 7 1.48 trimos-send 48 100 208
nowick 37 37 1 alloc-outboun 43 45 1.04
rpdft 44 44 1 slave-j25.fc 131 155 1.18
atod 31 31 1 low-lat—new 41 130 3.17
chul33 31 31 1 low-lat-good 37 122 3.29
vbebb 28 28 1 low-lat-true 45 157 349
vbebc 24 27 1.125 low-lat-unsaf 69 235 341
chul50 30 30 1 nak-good 66 420 6.36
ram-read-sbu 50 53 1.06
nak-pa 44 44 1 Average 1.638
roberto 36 36 1 Standard Deviation 1.139

approaches in the aspects of execution time and
memory space.

Since the suggested method is based on unfoldings,
which are free of any structural restrictions except
unboundedness, the first advantage is inherent.
Therefore, in this section we show that the suggested
method has the

comparisons with previous methods. Table 1 shows

second advantage through
the average and standard deviation of unfoldings’
to PNs’

benchmarks. As discussed in the last section, the

relative sizes sizes for various PN

suggested method has time complexity of
OUPlIP,). .. |Pyl. Although it still has an exponential
time complexity, if the sizes of |P,'s are small, the
exponential time complexity does not matter in the
pragmatic aspect. As shown in the Table 1, the size
of an unfolding is 1.638 times bigger than that of a
PN on the average and the standard deviation is

1.139. These values imply that the relative sizes of

unfoldings are small and relatively regular for most
PNs. Moreover, most worst cases can be avoided
through submarking reachability analysis and
heuristics based on structural relations among places.

Therefore, the time complexity OUPlIP,...|Pwy)

results in short execution time for most PNs.

Table 2 shows the execution time and the model
sizes needed in RG, BDD based method and the
suggested method respectively. Simulation is
performed on SUN sparc20 with 128MB main

memory. Data for RG and BDD based methods show

* the execution time required in building RGs or BDDs

and data for the suggested method represents
unfolding derivation time and reachability analysis
time for any 100 markings. In this simulation, we
RG based method and the BDD based
method as competitors because the former is most

select the

traditional approach and the latter is the representa-

tive approach suggested in order to overcome state
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Table 2 RG based method v.s. BDD based method v.s. Unfolding based method{suggested)

Example PN States E.xecution Nodes E.xecution Unfolding E'xecution
(pl+tr) of RG Time(sec.) of BDD Time(sec.) (pl+tr) Time(sec.)
amul-sh3 57 168 0.1 369 0.97 81 0.08+0.16
amul-sh4 76 960 05 604 480 141 0.27+0.16
amul-shb 95 6,080 41 1730 30.56 180 0.35+0.23
amul-sh6 114 29,760 286 2499 193.48 228 0.77+1.04
amulet3 81 513 0.3 . bl4 357 113 0.19+0.08
amuletd 75 741 05 1931 8.48 238 4.22+0.08
amulet5 135 39,150 388 2138 275.22 252 0.83+0.42
amulet6 162 283,095 fail 3534 1121.09 334 1.67+153
dmel0 | 81 11,264 8.3 271 2.79 81 0.11+0.1
dme20 161 2.2%10 fail 553 46.65 161 0.42+0.12
dme30 241 33x10" fail 833 265.88 241 1.17+0.1
dme40 321 45%10" fail 1113 879.14 321 2.53+0.12

space explosion. Benchmarks used in simulation are
scalable PNs where state space enlarges very rapidly
with sizes of PNs and they show difference in
efficiency among the RG, the BDD based method and
the suggested method, explicitly. RG based method
shows similar or superior performance in PNs with
small state spaces compared to BDD based method or
the suggested method. However, as the Table 2
presents, since an execution time and a required
memory space increase exponentially, it may be
impossible to build RGs themselves let alone perform
reachability analysis. This phenomenon means that
the RG based approach is suitable only for small PNs
with small state spaces but for PNs generating large
state space it is inefficient and inappropriate. The
BDD based method, which was invented to attack
state space explosion problem, shows off its
robustness and efficiency carrying out reachability
analysis for PNs where the RG based method failed.
However, as previously mentioned, since BDDs can
not be obtained from k-bounded PNs without
knowledge of PNs' upperbound k, BDD based method
still has a restriction of applicable PNs. Moreover, it
may still suffer from state space explosion for several
PNs generating large state space. Compared to the
demonstrates  both

former two methods, ours

efficiency and robustness performing reachability
analysis successively for all benchmarks containing
PNs generating tremendous state space. As
previously mentioned, unfolding based reachability
analysis was performed by Miyamoto et. al for the
first time. Table 3 presents comparisons between
them and the approach in this paper and each
simulation is performed for any 10 markings. For all
the benchmark groups in Table 3, the suggested
approach shows off its faster speed than [5]. Since
the method in [5] should explore whole state space
for non-reachable markings, reachability analysis
time increases sharply with the size of unfolding.
Compared to them, since suggested method decides
reachability through set operation of structural
relations among places in a target marking, it can
decide reachability fast without searching whole state
space. However, our approach still has a weak point.
As explained in section 3, the suggested method
requires exponential time complexity, OGP;llPyl...1PmuD,
and it may result in large execution time as the sizes
of marking and unfolding increases. Simulation data
for the last benchmark group in Table 3 show this
weak point of the suggested algorithm. Several items
corresponding to the suggestedv method have two
values, one is small value and the other is large value
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Table 3 [5] v.s. method suggested in this paper

Execution Execution Execution Execution
Example Time(sec.) Time(sec.) Example Time(sec.) Time(sec.)
(5] suggested method (5] suggested method
dmel0 0.03 0.01 dme20 0.13 0.01
dme30 1.63 0.01 dmed0 6.21 0.02
simp-phl0 0.82 0.01 simp-ph20 18.29 0.02
simp-ph40 300.94 0.02 simp-ph50 445.05 0.02
15-5pipe 0.16 o1 30-10pipe 29.96 05
45-15pipe 3444.3 0.42/101.44 60-20pine fail 2.14/1ail

or fail, which means that execution time exceeds 1
hours. For most simulations, only small execution
time is required but there are some cases requiring
large execution time. In order to improve the
utilization of the suggested method, the methods
presented in [7] and [9] can be adopted for reducing
the relative size of an unfolding and smarter heuristic
method to reduce search space efficiently will be
needed. Consequently, in spite of this weak point, we
conclude that the suggested reachability analysis
method based on unfoldings can achieve better
performance than other existing methods through

several experimental results.

5. Conclusions and Future Work

In this paper, we suggest a reachability analysis
method working on unfoldings. we attack several
problems of previous approaches - state space
explosion and restrictions in applicable PN classes -~
by formulating the reachability problem as set
operation of structural relations among places on an
unfolding. Experimental results show that speedup in
execution time, low memory requirement and no class
restriction are achieved through the suggested
method. Nowadays we are focusing our effort on
upgrading our reachability analysis program and
deriving smaller unfoldings.
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