VOQLx | AGHCE HoE B AWYE AW A7 AA] Aol 151

VOQL® : AdA ez AHolxd JA AulE S
A A7k AR Aol
(VOQL* : A Visual Object Query Language with
Inductively—Defined Formal Semantics)

ol & &'
(Suk Kyoon Lee)

2 o Ax dojeluo)AE sl HZol ALH VOQL(Visual Object Query Language)S ZHE2
I A Bd 270& ANdFgstn F4 ARES ATy JTHoAdnh 1y 71E9 VOQLE 27t
2 EAEo] 9t VOQLAAME AT B zvo] LD, WEy AdS 3 HAEl Ao FEo|
2l

oA AIEEL £F olMaln ABAolx) Bau)

B E=RME ot EASE FHATE VOQLS B VOQL-E AADT. AZPES de =
Pata olo] 71Zle} VOQLS W AWEE FEeHch VOQLse) Ao FREE 00PCS WS
BJIEs ZAxUA AuelN, AAWE NA8L, VOQLr V& Hierm) VOQLr TE H,
VOQL* 71% ¥&eHformula), VOQL* EH2} VOQL+ A 5¢] VOQL+ F#Eo] OOPC FEEH
4 AZHTL AAHoZ FAso] ATk A& F2F AL VOQLse) 24 FE Aol COPCE A
gl AAA WS B ¥4 A7k Rl Mol & YW HH Aweoz Deigel,
VOQL+s| AlEEe Foetn HAskn H@Aolch E VOQLr AEE OOPC FYFoE Ms)
£ E3HQ AAE AFU VOQLAE 249 2HH TS wgHE 4 oY Bus AAD Py
o2 W4 AWYL ATE RWA Az Aejololth

ol of,

ok

Abstract The Visual Object Query Language (VOQL) recently proposed for object databases has
been successful in visualizing path expressions and set-related conditions, and providing formal
semantics. However, VOQL has several problems. Due to unrealistic assumptions, only set-related
conditions can be represented in VOQL. Due to the lack of explicit language construct for the notion
of variables, queries are often awkard and less intuitive.

In this paper, we propose VOQL#*, which extends VOQL to remove these drawbacks. We introduce
the notion of visual variables and refine the syntax and semantics of VOQL based on visual variables.
We carefully design the language constructs of VOQL#* to reflect the syntax of OOPC, so that the
constructs such as visual variables, visual elements, VOQLx* simple terms, VOQL=* structured terms,
VOQL#* basic formulas, VOQL* formulas, and VOQL#* query expressions are hierarchically and
inductively constructed as those of OOPC. Most important, we formally define the semantics of each
language construct of VOQL#* by induction using OOPC. Because of the well-defined syntax and
semantics, queries in VOQL#* are clear, concise, and intuitive. We also provide an effective procedure
to translate queries in VOQL# into those in OOPC. We believe that VOQLx* is the first visual query
language with the well-defined syntax reflecting the syntactic structure of logic and semantics
formally defined by induction.

- This work was supported by Korea Science And Engineering Foundation (KOSEF) through Advanced Information
Technology Research Center(AITre).
T EA5 . dxdigs ANgAS ws =B 19999 1149 229
sklee@dankook.ac.kr Axlgrg - 20000 449 10¥

152 AR A8t =7A) dolghd o)A Al 27 A Al 2 Z(20006)

1. Introducion

Rapid progress in information technology on
WWW, GIS, CAD/CAM, multimedia, and etc.
demands the capability of managing complex
structured data in databases. Object data models to
meet the challenge have been proposed [2, 3, 15, 5].
In these models, data are grouped into sets of objects
called classes according to their properties and
behaviors. Classes are organized into the class
aggregation and class generalization hierarchies.

The complexity of data structures in the
underlying data model requires appropriate expressive
capability of associated query languages be powerful
enough to manipulate data and formulate queries
effectively. The

increases the level of complexity of associated query

complexity of data structures
languages and, in turn, places a heavier cognitive load
on database users. In order to reduce such load on
users and to maintain the expressive capability
required by the underlying model, visual query
languages are considered as a solution. However,
research on visual query languages for object data
models is still in a primitive stage.

Many visual query languages [1, 6, 7, 8, 10, 11, 16,
18] have been proposed. QBD=* [1], G+ [7], ERC [8],
and GRAQULA [18] cannot represent object~oriented
features such as path expressions and various set
comparisons, since they are based on relational or
entity-relationship (ER) models. The notion of the
path expression [4, 12, 9], which denotes a nested
structured data object spreading across classes by a
sequence of attribute names and dot notations,
provides a compact expressive capability of
representing and managing complex data objects in
the class hierarchies. A path expression may simply
be viewed as a sequence of relationship instances
joined together without an explict join notation.

In visual query languages for object data models[6,
11, 16, 19], queries are constructed on a sub-graph of
a schema diagram. However, path expressions in
VQL [16] and VQL [19] are represented by adding
textual variables to a sub-graph of a schema

diagram. Since the textual variables are used to link

relationship instances implied by the sub-graph, they
fail to
relationship instances linked together across several
classes [13, 14]. With all formal
GOOD [11] only
modification operations such as deletions, additions,
and updates. QUIVER [6], which is capable of

representing relationship instances visually,

graphically visualize the sequence of
syntax and

semantics, considers data

lacks
formal syntax and semantics. Therefore, it fails to
properly address issues, such as path expressions,
related to object database query languages.

The wvisual object-oriented query language
(VOQL) recently proposed in the references [13, 14]
has been designed to handle set-related comparisons
visually and represent path expressions in the
tree-structured graph. VOQL has the
semantics based on the Object-Oriented Predicate
Logic (OOPC) [4], which is an extension of the tuple

relational calculus. However, VOQL assumes that

formal

every attribute is multi-valued. Due to this
assumption, all the intermediate results in path
expressions are represented by the set notation in
VOQL, even though they are single-valued. It makes
queries less intuitive and difficult to understand.
VOQL does not explicitly include the notion of
variables as a basic language construct. The absence
of the explicit language construct for the notion of
variables in VOQL causes the semantics of other
language constructs to become complicated since
other constructs implicitly take the role of variables.
Moreover, various issues related to the notion of
variables, such as quantifiers, scoping problems, and
explicit joins, are not easy to address, and the
solutions for them are often awkward and complex.
In this paper, we propose VOQL* which has
significantly improved VOQL in many ways. The
language constructs in VOQL* are designed carefully
to reflect corresponding ones in OOPC. The notion of
the visual variable is introduced to correspond to the
object variable in OOPC, and the notion of the visual
element to represent the value of a single-valued
attribute. A visual element is usually an intermediate
result or final result of a VOQL* structured term

explained below. Introducing the notion of visual

VOQL*

variables allows us to treat universal quantification
and existential quantification in the same way as in
traditional logic.

Based on visual variables and visual elements, the
notions of the VOQL* simple term and VOQL* basic
formula are presented corresponding to the notions of
term and atomic formula in OOPC. The collection of
VOQL#* simple terms may be organized into the
tree-structured VOQL* structured term. A VOQLx
the VOQLx*
expression, represents the collection of QOPC textual

structured term, also called path
path expressions with the same object variable. The
VOQLx basic formula is a condition consisting of
VOQL#* simple terms and comparison operators. The
VOQRL+ formula is a collection of VOQL* basic
formulas, whose VOQL#* simple terms -constitute
some VOQL= VOQL* query

expressions consist of VOQL#* formulas and target

structured terms.

lists, which represent the attributes to project.

The semantics of each language construct in
VOQL* are formally defined inductively using OOPC.
The semantics of queries in VOQL* can easily be
derived through inductive application of the semantics
of the language construct. Moreover, we provide an
effective procedure to translate queries in VOQL* into
those in OOPC.

This paper is organized as follows. In Section 2,
we introduce basic language constructs of VOQL*
and simple examples. We then present the syntax and
semantics of VOQL* in Section 3. We illustrate more
complex query expressions in Section 4. Finally, we
end with closing comments and discussion on future
research issues in Section 5.

2. Basic Visual Constructs and Examples
in VOQL*

In this section, we begin with the description of
OOPC, and then, illustrate several VOQL* query
examples. We provide the semantics of VOQL#* query
examples using OOPC.

2.1 OOPC and Path Expressions

Among many object-oriented query languages
such as XSQL [12], 0:SQL [2], and PathLog [9], we

AgAeR oY W84 AWEL Ad AZ AA Aol 153

choose OQOPC for its
semantics, and formal foundation. The OOPC is an

simple syntax, intuitive
extension of tuple relational calculus, and the details
can be found in the reference [4].

A typical OOPC expression has a structure similar

to that of an SQL statement;
{Target list | Range clause; Qualification clause}.

The target list specifies what must be retrieved.
The range clause, written as v/C where v is an
object variable and C a class name, specifies the
range of the object variable v, i.e, the set of objects
of the class C to which v is bound. Note that an
object variable appearing in the target list should be
bound to some class in the range clause. The
qualification clause is a well-formed formula.
Predicates in the formula are either atomic or
quantified. An atomic predicate is true, false, a range
clause, or t; 4 tz, where 8 is a comparison operator,
and 4 a cohstant, an object variable v, or an attribute
value v.Att; Note that a range clause is not included
in the definition of atomic predicates in the reference
[4]. However, since a range clause x/C is more often
written as x&C and is considered an atomic predicate
in many database literatures, we include it here.
Set-related operators such as € and € are allowed in
addition to comparison operators in tuple relational
calculus. A quantified predicate is either VRange
Clause (Qualification clause) or I Range Clause
(Qualification clause).

As an example, let’s consider the following query
example written in OOPC.

OOPC 2.1 {xName | x/Company; Jy/Employee [(y
= x.President) A (y.Salary > $100K)] },

where x and y are object variables bound to the
classes Company and Employee in the range clauses,
respectively.

The range clause and qualification clause of OOPC
may be interpreted as the conjunction of the former
and the latter; the range and qualification clauses as
a whole are called the OOPC well-formed formula
(wf). For instance, x/Company [3y/Employee ((y =
x.President) A (y.Salary > $100K))] in OOPC 2.1 is

154 Ao etsl =g dolghol 2 A 27 A A 2 E(20006)

an OOPC wif.
In order to provide navigational capability over
complex structures of objects reflecting class

hierarchies, OOPC allows the path expression [4, 9,
12, 17]-- a term constructed from an object variable
and a sequence of attribute names. The idea is to
follow a sequence of links between objects without
having to specify explicit join conditions. Consider the
following OOPC query:

O0PC 2.2 {x.Model | x/Vehicle;
x.Manufacturer. Type = Corporation A

x.Manufacturer. Headquarter.City = "New York”}

x.Manufacturer.Headquarter.City and x.Manufa—
cturer. Type are path expressions where x ranges over
the class Vehicle. The dot function in the path
expression plays the role of function composition
(e.g., City(Headquarter(Manufacturer(x)))). In this
paper, we follow the definition of path expressions in
ODMG 2.0 [b], where a multi-valued attribute is
allowed only in the last position in a path expression.

2.2 Visual Constructs and Query Examples In

voQL*

The basic language constructs in VOQL* are
blobs, subblobs, directed edges, visual variables,
visual elements, stump blobs with undirected edges,
and labels. As in Fig. 1 and 2, blobs are represented
by rectangles, subblobs by nested rectangles, visual
variables by shaded circles, visual elements by
transparent circles, stump blobs by shaded ecllipses.
Blobs represent classes (including subclasses) with
extensional notion. A blob represents the set of
objects in a class or a subclass. A subblob represents
a subset of a blob. Visual elements represent objects
Objects
represented by visual elements enclosed by blobs,

in classes. in user—defined classes are
while those in primitive domains by visual elements
without enclosing blobs.

Vehicle Company Address

"New York"
0

Model Type o= "Corporation"

Fig. 1 The VOQL* expression for OOPC 2.2.

A visual variable is always located at the side of
a blob or a subblob. A pair of a variable and a blob
{or a subblob) to which the variable is attached,
represents that the variable is bound to the set of
objects in the blob (or the subblob). Directed edges,
which are used to represent attributes, are always
placed either between elements or from variables to
elements. Labels attached to directed edges are the
names of corresponding attributes. Conditions in
VOQL=*

between a textual constant and a visual element

are often represented by comparisons
which represents an attribute value. Stump blobs
denoted by connected through

undirected edges to visual variables or elements

shaded ellipses,

represent the attributes to be projected. Let us
reconsider the query in OOPC 2.2. The corresponding
visual query in VOQL* is given in Fig. 1.

Note how the target list, range clause, and
qualification clause of OOPC 2.2 are visualized in the
VOQL* query expression in Fig. 1. Let vl, el, €2, €3,
e4, sbl denote the visual variable in the blob Vehicle,
the visual element in the blob Company, the visual
element in the blob Address, the visual element
labeled with “City”, the visual element labeled with
and the stump blob labeled with “Model”,
x/Vehicle is
represented by the blob Vehicle and the variable v1.
The target list xModel
variable v1, the stump blob sbl and the undirected

“Type”,

respectively. The range clause

is represented by the

edge between vl and sbl.

The qualification clause in OOPC 2.2 consists of
the equality comparison between the path expression
“x.Manufacturer. Headquarter.City” and the constant
value “New York”. The path expression “x.Manu-
facturer.Headquarter.City” is visualized as a sequ-
ence of the variable vl, the edge labeled with
“Manufacturer”, the element el, the edge labeled with
“Headquarter”, the element e2, the edge labeled with
“City”,
elements el,

and the element e3. The variable vl and the
e2, e3 represent the textual path
x.Manufacturer.

expressions x, x.Manufacturer,

Headquarter, and x.Manufacturer.Headquarter.City,
respectively. Note that a visual element represents an

intermediate or final result of some path expression.

VOQL* :
Let's consider another VOQL* expression in Fig. 2
corresponding to the expression of OOPC 2.3.

Company Division

Divisions H Employees
LH
@D

Name

Employee

E Age > 30

Fig. 2 The VOQL* expression for OOPC 2.3.

O0PC 2.3 {xName | x/Company; dy/Division [y &
x.Divisions A Fz/Employee [z € y.Employees A
z.Age > 3011}

For multi-valued attributes such as Divisions and
Employees, subblobs are used instead of elements. Let
vl, sbl, v2, sb2, v3, and el denote the visual variable
for the blob Company, the subblob and the visual
variable for it inside the blob Division, the subblob
and the visual variable for it inside the blob
Employee, and the rightmost element in Fig. 2. The
target list in OOPC 2.3 is represented by the variable
vl and the stump blob labeled with “Name” ; the
range clause by the variable vl and the blob
Company. The subblobs sbl and sb2 represent sets of
objects that x.Divisions and y.Employees return,
respectively. Note that v2 and v3 are bound to sbl
and sb2, which are a subset of Division and a subset
of Employee, respectively. In general, a visual
variable v, the existential quantifier near the variable
v, and the blob (or the subblob) b to which the
variable v is bound, represent Jx/set where v is the
visual representation of the textual variable x, and b

is the visual representation of the range set.

3. VOQL* : Syntax And Semantics

In this section, we formally define the syntax of
VOQL#* based on Higraph. Similar to that of OOPC,
the syntax consists of VOQL=* VOQL*
and VOQL#* expressions. We then
inductively define the semantics of VOQL* using
OOPC. For each language construct in VOQL* such
as VOQL* terms, VOQL#* formulas, and VOQL=*

expressions,

terms,
formulas,

we provide corresponding language

constructs in OOPC. The semantics of queries in

A Fojg Y AAEE Ad Alzk A Do 155

VOQL* are defined by translating each language
construct in VOQL#* into corresponding language
constructs in OOPC and combining them according to
the rules. Note that the translation process is also
inductive from the language constructs at a lower
level to the ones at a higher level of the syntactic
structure.

’ 7\:}2 al a2 al a2
a3

(a

) (b) (c)
al a2 al al a 2
a; a4 a3 a4
as as a6 7
(e)

63 (g)
Fig. 3 VOQL=* structured terms

3.1 voQL* Terms

Blobs, subblobs, visual elements, visual variables,
and textual constants including text strings and
numbers, are VOQL* simple terms. Based on VOQL*
simple terms, VOQL* structured terms are defined.
VOQL=* structured terms have a tree structure: the
root of a tree is a visual variable, internal nodes are
visual elements, and leaf nodes are either visual
elements or subblobs. Nodes are connected by
directed edges labeled with attribute names. Note that
subblobs are allowed only as leaf nodes of a VOQL=*
structured term.
of VOQL=*
illustrated in Fig. 3. Trees in Fig. 3 (a)-(f) are all
single VOQL* structured terms. Case (a) shows the
simplest VOQL* structured term. The depth of a node
in a VOQL#* structured term is the number of directed

Examples structured terms are

edges from the root to the node. The depth of a
VOQL* structured term is the largest of depths of
nodes in the tree. The depths of structured terms in
Fig. 3 (a)-(f) are O, 1, 1, 3, 3, and 3, respectively.
The example in Fig. 3 (g) is not a single VOQL=*

156 AR A=A deleol 2 A 27 A Al 2 E(20006)

structured term. It shows two VOQL#* structured
terms participating in a VOQLx formula which will be
explained in Section 3.2. The visual variable of the
VOQL* structured term at the bottom is bound to the
set of objects represented by the subblob of the
VOQL#* structured term at the top. The query
expression in Fig. 2 has three VOQL* structured
terms whose depths are all one. The path from the
root of a tree T to a node N in T is represented by
the string resulting from concatenating the variable
name of the root and the sequence of dots and labels
attached to directed edges from the root to N. The
resulting string is the OOPC path expression for the
node N.

Every node in a VOQL* structured term can be
translated
translating VOQL* structured terms into OOPC path
expressions, it is assumed that distinct object
variables are used for each VOQL* structured term. If
we visit in preorder all nodes of VOQL#* structured
terms in Fig. 3 (a)-(g) and convert them into OOPC
path expressions, the result will be as follows:

(a) x1

(b) x2, x2.al, x2.a2

(¢) x3, x3.al, x3.a2

(d) x4, x4.al, x4.a2, x4.al.a3, x4.al.a3.a4

(e) x5, x5.al, x5.a2, x5.al.a3, x5.al.a4, xb.al.a4.ad

(f) x6, x6.al, x6.al, x6.a2 x6.ala3, x6ala4,
x6.al.ad.ad

(g) X7, x7.al, x7.a2, x8, x8.a6, x8.a7

For example, the VOQL# structured term in Fig. 3 (e)

into an OOPC path expression. In

visualizes six OOPC path expressions. Introducing the
tree structure into the notion of path expressions
provides us the more compact and natural way of
representing path expressions than OOPC does. Note
that the object for each node in a VOQL* structured
term is functionally determined by the object that the
root (the visual variable) is bound to.

There may be VOQL* structured terms that are
structurally different from, but semantically identical
to each other. The VOQL* structured term in Fig. 3
(e) is structurally different from the one in Fig. 3 (f),
but is semantically equivalent. The latter has
redundant visual constructs -- a visual edge and a

visual element.

As shown above, by visualizing various
relationships between textual path expressions, a
VOQL* structured term has a compact representation
of many textual path expressions. Since the term
path expression is widely used, VOQL* structured

terms are often called VOQL+* path expressions.

3.2 VOQL* Formulas

In this section, we define VOQL* formulas. Instead
of providing a BNF-like formal syntax, we describe
how to construct VOQL#* formulas from VOQL*
terms and various comparison operators. First, we
define generic forms of VOQL+* basic formulas. We
then provide rules on how to compose VOQL#* basic
formulas into VOQL* well-formed formulas, which
we simply call VOQL* formulas.

3.2.1 VOQL* Basic Formulas

A VOQL#* basic formula is a condition consisting
of VOQL* simple terms and a comparison operator.
Comparison operators may be represented by relative
positions in space of VOQL#* simple terms. Depending
on the types of comparison operators, we distinguish
VOQL#* basic formulas into value-based conditions
and oid-based conditions. Valued-based conditions
and oid-based conditions are called v—formulas and

o—formulas, respectively.

09 C

(a) (b) (©)

rogoa [4

Fig. 4 Various forms of v-formulas. (a) the form

of :,6c (b) the form of 16t (c) the

simpler form of ¢,6¢,

V-FORMULAS

V-formulas are atomic in the sense of atomic
formulas in logic. V-formulas are of the form & & ¢
or t; # tz where c is a constant in a primitive
domain, and t; a visual element or subblob. Generic
forms of v—formulas are shown in Fig. 4 (a) and (b).
Two VOQL* query expressions in Figs. 1 and 2 have
three v~formulas of the form ¢; @ ¢, corresponding to
representation: Type =

the following textual

VOQL* :

and Age > 30.
V-formulas of the form #; & tz in Fig. 4 (b) are used

"Corporation”, City = "New York,”

to represent conditions corresponding to value-based
joins in the relational model, where t; and £z are visual
elements or subblobs in primitive domains.

We introduce the simpler form of ¢ ¢ ¢ in Fig. 4
(¢) for notational simplicity. Using many visual
constructs in a query may make it difficult to
understand and decrease the benefit of using a visual
query language.

O-FORMULAS

Borrowing the notations for set inclusion and set
exclusion in Venn diagram, we spatially represent
various conditions among elements, subblobs, and
blobs. Simplest o-formulas among them consist of
only two VOQL* simple terms. These formulas are
called atomic o-formulas. Atomic o-formulas and

their semantics are given in Fig. 5.

Bi]-0 ¢ Bi /'lABJ

B,C B; x/B;

L

Bil Y3x Fi

e;& B; IAx/B;
(a) (b) (c) (@

Fig. 5 Atomic o-formulas and their semantics.

In Fig. 5, the visual element, blob, subblob, and
visual variable are labeled with e;, B; Bj and x,
respectively, only for the purpose of defining the
semantics of atomic o—formulas. These labels except
the one for a blob will not be shown in ordinary
Note that there are

directed edges connected to the visual element e¢; and

VOQL* query expressions.

the subblob B; since they always exist as nodes of
some VOQL* structured terms.

The semantics of o-formulas in cases (a) and (b)
in Fig. 5 are straightforward. Case (c) in Fig. 5 shows
the representation of a range clause in VOQL#* and its
semantics are the same as in OOPC. The o-formula
in Case (d) represents the existentially quantified
range clause The universal quantifier may be

introduced as well. However, introducing the

universal quantification to the language requires us to

FAdHeE Fod 4 ANEE Ad Al AR Aol 157

solve scoping problem among various variables,
which is beyond the scope of this paper. Examples in
Figs. 1 and 2 illustrate how these o-formulas are used
in queries.

We can repetitively apply atomic o-formulas to
produce more complex o-formulas and derive their
semantics based on those of atomic o-formulas.

However, there are formulas that simple inductive

application of these atomic o-formulas cannot
represent properly. These formulas are called
extended o-formulas. We provide extended

o-formulas and their semantic definition in Fig. 6.

Cases (a) - (c) in Fig. 6 represent o—formulas for
conditions between subblobs at the same nesting
level. Case (d) represents an o-formula for a condition
between a nesting subblob and a nested subblob at
multiple levels, and case (e) an o-formula for a
condition of identity comparison between two visual
elements. Case (f) shows the representation of a
range clause based on a subblob and its semantics.
The VOQL=* query expression in Fig. 2 shows one
range clause for case (¢) in Fig.5 and two for case (f)
in Fig. 6.

B B B b B =
|l

B;C B/\BC B, B;C B/A\By< B/AB(1By=0 B;= By/AB\C B,

(a) (b) , (©)

B, B; B
2 en (N B
[O

e.= e,N\en e B; xfb,/\xe B,/AB.C B;

(d) (e) ()

B,....C B,C B,

Fig. 6 Extended o-formulas and their semantics.

It may not be easy to define general syntactic rules
(e.g. BNF for
generating all o-formulas, due to the spatial nature of

textual languages) capable of
the language. Instead, we provided typical cases of
o-formulas and their semantics in this section. We
may use them as generic templates whenever we
need. We may derive more useful and interesting

o-formulas by adding additional visual constructs to

158 BEAYH = A dloleto] 2 A 27 F A 2 3(0006)

o-formulas in Fig. 5 and 6. We will further pursue
this topic in subsequent papers.

3.2.2 VOQL#* Well-Formed Formulas

In the previous section, we presented VOQL=* basic
formulas and their semantics. VOQL* well-formed
formulas, simply called VOQL* formulas, can be
constructed by creating various instances of the
generic VOQL#*
organizing them in certain ways. Different from the

basic formulas, combining and
definition of wffs in logic, naive inductive application
of VOQL* basi¢c formulas does not produce a valid
VOQL* formula.
subblobs shown in VOQL* basic formulas cannot

Note that visual elements and

exist by themselves in a VOQL* formula, since they
are meaningful only as nodes of VOQL* structured
terms. A VOQLx* formula is defined as a collection of
VOQL+*

conditions:

basic formulas satisfying the following

(C1) All the visual elements, visual variables, and
subblobs shown in a VOQL#* formula are nodes
of some VOQL* structured terms. A visual
element or a subblob may belong to more than
one VOQL#* structured terms, while a visual
variable to only one VOQL* structured term.

(C2

~

Each visual variable, which is the root of a

VOQL#* structured term, participate in a range

clause, as in Fig. 5 (c) and Fig. 6 (f). More than

one visual variable may participate in a range
clause.

(C3) All the leaf nodes of a VOQL#* structured term
participate in some VOQL#* basic formulas.
However, non-leaf nodes of path expressions
may not.

(C4) Juxstaposition of more than one VOQL#*
formulas satisfying rules (C1)-(C3) above is
also a VOQL=* formula.

In order to illustrate (C1)-(C4), two VOQL#*
formulas are presented in Fig. 7 (a) and (b). (C1) says
that no visual element or subblob can exist alone
without being connected to a VOQL* structured term.
(C2) implies that no visual variable can exist unless
they participate in range clauses. (C3) means that if
a leaf node of a VOQL structured term is not involved

in any VOQL#* basic formula, the whole VOQL*
invalid. (C4)

juxtaposition of more than one VOQL#* formulas is

formula becomes means that the

interpreted as their conjunction.

(a) Vehicle Company Address

Manufacturer Headquarter City= "New York"
Type =« "Corporation"

(b) Company Division Employee

Fivisions ? Employees ? Age > 30

Fig. 7 Examples of VOQL* formulas

Before we present the algorithm converting a
VOQL* formula into an OOPC wff, we introduce the
notion of the restricted relationship between range
clauses. For VOQL+* structured terms vt; and vtz, and
a subblob sb; as a leaf node of vt;, suppose that a
range clause r¢; consists of the root of vt; and a blob
(or a subblob), and that a range clause rcx consists of
the subblob sb; and the root of vte. Then, the range
is defined to be restricted by the range

The VOQL*
illustrates these restricted relationships among three

clause ree
clause rci expression in Figs. 2
range clauses.

The semantics of a VOQL=* formula f is built in the
following steps. First, we translate VOQL* simple
terms into OOPC terms; then, for each individual
basic formula in the formula f, produce an OOPC
formula incrementally by applying the semantics of
individual basic formulas defined in Fig. 4, 5, and 6.
The order of applying the semantics of each basic
formula in the formula f is important since various
syntactic and semantic concepts in VOQL* that are
represented in the spatial context should properly be
transformed into one-dimensional text where the
order of translated objects matters. A VOQL* formula
f is translated into an OOPC wiff by the algorithm
MakeFormula as follows:

Algorithm MakeFormula

A. Get ready for the translation:
(1) Generate OOPC terms for class names of all

VoQLr : Ao HoB ¥4 AW AW Al AA) Do) 150

the blobs in f

(2) Generate OOPC textual constants for textual
constants in all the v—formulas in f.

(3) Assign distinct textual variables to all the
visual variables.

(4) Generate OOPC path expressions for all the
visual elements and subblobs in the VOQL*
formula f as shown in Section 3.1.

B. Perform the translation

(1) Based on the semantic definition of VOQLx*

basic formulas in Section 3.1, choose a VOQL=*

basic formula in f and translate it into QOPC
formulas using textual terms generated in Step

A. Perform this step until no more basic

formulas remain to process. Then, by removing

all the AND connectives denoted by A from
the resulting OOPC formulas, generate a list of

OOPC formulas without the AND connectives.

Modify the order of OOPC formulas in the list

resulting from step B.(1) in order to satisfy the

(2

~

following conditions: (a) all the range clauses
and quantified range clauses are placed at the
front of the list. (b) If a range clause rcx is
restricted by a range clause rc, the range
clause rce should not be placed before a range
clause rci.

(3

=

Remove commas from the list and connect all
the OOPC formulas except all the range
clauses in the list with the AND connective.
Then, place the simbol [at the end of all the
range clauses and the simbol] at the end of
the resulting formula.

Suppose that we apply the algorithm MakeFormula
to the VOQL=* formula in Fig. 7. After applying the
algorithm, we generated textual terms and an OOPC
wff as follows:

Example in Fig. 7

Class names: Vehicle, Company, Address

Textual constants: “Corporation”, "New York"

Path expressions:
x1, x1.Manufacturer, x1.Manufacturer.Type,
x1.Manufacturer.Headquarter, x1.Manufacturer.Headquarter.City

The list of OOPC Formulas converted from VOQL#* basic formulas:
[x1/Vehicle, x1.Manufacturer € Company, x1.Manufacturer.Type
= “Corporation”, x1.Manufacturer Headquater =€ Address,

x1 Manufacturer. Headquater.City = “New York™]

The resulting OOPC formula:
x1/Vehicle [x1Manufacturer € Company A
x1.Manufacturer. Type = “Corporation” A
x1.Manufacturer. Headquater € AddressA
x1.Manufacturer.Headquater.City = “New York”]

Example_in Fi b

Classes names: Company, Division, Employee

Textual constants: 30

Path expressions : x1, x1.Divisions, x2, x2.Employees, x3,

x3.Age
The list of OOPC Formulas converted from VOQL* basic formulas:
[x1/Company, 3x2/Division, x2 € xl.Divisions, x1.Divisions C

Division, 3x3/ Employee, x3 € x2Employees, x2Employees C
Employee, x3.Age > 30 |

The resulting OOPC formula:

x1/Company 3x2/Division 3x3/ Employee [x2 € x1Divisions A

x3 € x2Employees A x1.Divisions C Division A x2.Employees

C Employee A x3.Age > 30]

3.3 VOQL* Query Expressions

A shaded stump blob connected to a visual variable
or element with an undirected edge is called the
VOQL* target list. Each shaded blob is labeled with
the list of names of attributes to project. A VOQL*
query expression consists of VOQLx* target lists and
a VOQL* formula. Since the syntax and semantics of
VOQL#* formulas have already been defined in Section
3.2, we focus on the syntax and semantics of VOQLx*
target lists in this section.

A VOQL* query expression (or simply a VOQL*
expression) is defined by adding VOQL* target lists
to a VOQL* formula. The semantics of VOQL* query
expressions are given in Fig. 8 The expression in
Fig. 8 (a) represents the case of a target list being
directly connected to a visual variable; the one in Fig.
8 (b) the case of a target list being indirectly
connected to a visual variable through visual
elements. Let B; denote a blob (or subblob) and label
list a list of attributes. An empty list of labels in a
target list implies returning all the attributes of the
connected node (a visual variable or visual element)
by default. Otherwise, it returns only the values of the
attributes in the list.

For any VOQL* query expression expr, if we
remove VOQL=* target lists and undirected edges
connected to them from expr, the resulting expression
will be a VOQL* formula. Let the resulting formula

160 ARG = EA vt o] & A 27 B Al 2 Z(20006)

be ufa The semantics of expr will be defined in the
following steps:

1. Translate a VOQL* formula vfa into an OOPC
wif using the algorithm MakeFormula. Let the
resulting OOPC formula be ofa

2. Generate an OOPC target list from a VOQL*
target list of expr using textual terms generated
in Step 1.

3. Find a range clause having a variable occuring
in the OOPC target list from the OOPC wif ofa
and remove the range clause from ofa The
resulting OOPC formula will be a qualification
clause in OOPC. It is denoted as gc in Fig. 8.
When the qualification clause gc is empty, it is
vacuously true.

4. Generate OOPC range clauses, which are the
clauses that have been removed in Step 3.

If no more VOQL* target lists remain to process,

then stop. Otherwise goto Step 2.

Bi

represent the rest of a VOQL*
query expression consisting of 0
or more directed edges.

< if empty(label list) then { x | x/Bi; gc }
else{x.labell,---, x.labeln | x/Bi; qc }

where x is the visual variable in Bi, label list is labell, .-+, labeln,
and Ix/Bi gc represents the OOPC wif translated from the rest of

the VOQL* query expression.

(a)

Bi label list

BN

represent the rest of VOQL*
query expression consisting of 0

or more directed edges.

& if empty(label list) then { x.att;--atty | x/Bi; gc }
else{x.att;---attplabel), ..., x.att;----attxlabel, | x/Bi; gc }
where x.aft;---atty is the OOPC path expression of the element in
Bi, label list is label;---, label, and ZJx/Bi qc represents the
OOPC wift translated from the rest of the VOQL* query

expression.
(b)
Fig. 8 VOQL* query expressions and their
semantics

Multiple VOQL=* target lists may exist for one
VOQL* query expression. Multiple VOQL* target

lists in a query expression are represented by

Cartesian Product of lists of attributes. We are not
concerned about the order of target lists in this paper.

Consider the example in Fig. 9 (a) and (b). The
VOQL* query expressions are translated into the
OOPC expressions in Fig. 9 (¢) and (d).

Name
Compan Address

Vehicle
Manufacturer Headquarter City= "New York"
sy "
Model O Type= Corporation
(a)
Company

Division f’ DivName Employee
Divisions Employees Age > 30
=/ poy 58

/ name

(b)

{x1.Model, x1.Manufacturer.Name | x//Vehicle; x!.Manufacturer €
Company A x/Manufacturer.Type = “Corporation” A
x1.Manufacturer.Headquater & Address A

x{ Manufacturer.Headquarter.City = "New York"}

(c)

{x1.Name, x2.DivName| x1/Company, x2/Division; 3 x3/Employce
[x1.Divisions C Division A x2 & xI.Divisions A x2.Employees C

Employce A x3 & x2.Employees A x3.Age > 30]}

@

Fig. 9 Examples of VOQL* query expressions

4. More VOQL* Query Examples

In this section, we present more query examples in
order to illustrate the intuitiveness and usefulness of
VOQL* as a visual query language. Consider the
following queries:

(a) "Retrieve the vehicles such that the headquarter
of the manufacturer and the dealer are located in
the same city.”

(b) "Retrieve the vehicles such that the headquarter

=

of the manufacturer and the dealer are located in
the city of New York, and moreover, at the same
address.”

"Retrieve the name of a division in GM and the

~

(c
name of an employee working in the division such
that all the vehicles the employee owns are
assmebled by the division.”

VOQL* : Aoz e 34 AHEE Ad Az A 2o 161

(d) "Retrieve the name of a division in GM and the
name of an employee working in the division such
that none of the vehicles the employee owns is
assmebled by the division.”

Vehicle Company Address
Dealer Location City = City
| O
o o b}
T Headquarter
(a)
Vehicle Company Address
Dealer Location City= New York
| yo—tp—T"— |
01/:»Oﬁ—+c
£1 Headquart
(b)
Company Division Employee

31 Divisions o] Employees % dQige > 25

Name ="GM" / nbles OwnadGehicles
DivName

Vehicles
©

Company Division Employee

Name

Vehicles
(d
Employee Name Vehicle
1 OwnedVehicles
L.]\ Color = "red"
o
Presiden Manufacturer
\ (!)
Company

(e)

Fig. 10 Examples of VOQL* query expressions.

(e) "Retrieve the name of an employee, (1) who has
a vehicle with red color (2) and the manufacturer
of which is the company where he is the president
of.”

VOQL* representations for the queries above are

given in Fig. 10. Note that a VOQL* basic formula (a

v-formula) of the form (c) in Fig. 4 is used in Fig. 10

(a).

The VOQL* query in Fig. 10 (b) uses a

o-formula of the generic form in Fig. 6 (e). VOQL*

queries in Fig. 10 (a) and (b) are translated into the

following OOPC queries.

(a)

(b)

{ x | x/Vehicle, x.Dealer € Company A
x.Manufacturer € Company A x.Dealer.Location
& Address A x.Manufacturer. Headquarter &
Address A x.Dealer Location.City =
x.Manufacturer. Headquarter.City };

{ x | x/Vehicle, x.Dealer € Company A
x.Manufacturer € Company A x.Dealer.Location
€ Address A x.Manufacturer.Headquarter €
Address A x.Dealer.Location =
x.Manufacturer.Headquarter A x.Dealer.Location
= "New York” }

VOQL* queries for queries (c), (d), and (e) are

represented in Fig. 10 (c), (d), and (e). Note that the
query in Fig. 10 (c) uses an o—formula of the form

in Fig. 6 (d), while the one in Fig. 10 (d) an o-formula

of the form in Fig. 6 (c). Note that the query (e) is

cyclic. Their OOPC translation is as follows.

(¢

(d)

(e)

{ x2DivName, x3Name | x2/Division,
x3/Employee ; 3xl/Company [xI.Name = "GM"
A x2 € xl.Divisions A xI.Divisions C Division
A x3 € x2Employees A xZEmployees C
Employee A x2.Assembles < Vehicles A
x2.Assembles O x3.0wnedVehicles A x3.Age >
251k

{ x2DivName, x3Name | x2/Division,
x3/Employee ; 3xI/Company [xIName = "GM”
A x2 € xl.Divisions A xl.Divisions C Division
A x3 € x2Employees A xZEmployees C
Employee A Vehicles D xZ.Assembles A
Vehicles D x3.0wnedVehicles N (x2.Assembles
N x3.0wnedVehicles) = @ A x3.Age > 251 };
{ x Manufacturer.President.Name | x/Vehicle; x €
x.Manufacturer President.OwnedVehicles A
x.Manufacturer.President.OwnedVehicles o
Vehicle A x.Color = "red” N x.Manufacturer €
Company A x.Manufacturer.President S
Employee }

162 R A3 E =R cwoletHo] & A 27 H A 2 Z0006)

Since the translation process of queries in Fig.10
(a)-(d) is rather straightforward, let us focus how the
query in Fig.10 (e) is translated. By applying
Algorithm MakeFormula to the query, we can
generate path expressions such as { x, x.Color,
x.Manu-

query
expression has four VOQL#* basic formulas. Let us

x.Manufacturer, x.Manufacturer.President,

facturer President.OwnedVehicles }. The

illustrate how these formulas are translated into

corresponding OOPC wifs as follows:

(1) one VOQL* basic formula for Case (f) in Fig. 6:
x/Vehicle A X € x.Manufacturer.President.
~OwnedVehicles A x.Manufacturer.President.
~OwnedVehicles C Vehicle

(2) one VOQL* basic formula for Case (a) in Fig.4:
Color = "red”

(3) two VOQL* basic formulas for Case (a) in Fig. 5
x.Manufacturer € Company,
x.Manufacturer President € Employee

After applying Step B of Algorithm MakeFormula, we
have the following formula:
x/Vehicle [x & xManufacturer.President.
OwnedVehicles A x.Color = "red” A xManu-
facturer & Company A x.Manufacturer.President
€ Employee]

of VOQL#* query

expressions, we can easily derive the OOPC query

According to the semantics

expression {e) from the formula above.

4. Closing Remarks and Future Research

The contributions of VOQL* may be summarized
as the excellent expressive capability of strucutured
objects and set-related conditions, the
reflecting the syntactic structure of OOPC, and the
inductively defined formal semantics based on OOPC.

syntax

The language constructs of VOQL#* are based on
Higraph. In Higraph, the notion of sets is represented
with the Venn diagram, while that of nested
structures with the graph. The language constructs
corresponding to the Venn diagram and the graph in
VOQL#

enable us to naturally represent both

set-related conditions and tree-strucutured terms.
As textual object query languages, XSQL [12] and
PathLog [9] have proposed text-based strucutured
path expressions as an extension to simple linear, path
their path

represented by adding another dimension to linear

expressions. However, expressions
path expressions are not as intuitive nor as powerful
as VOQL#* structured terms.

Recently, two visual object query languages such
as QUIVER [6] and PESTO [20] have been proposed.
QUIVER has the language constructs similar to blobs,
edges and visual elements. With these graphical
QUIVER has better

structured path expressions.

language constructs,
representation of
However, QUIVER does not have a formal semantics.
It also fails to support set-related conditions such as
VOQL*, and structured path

expressions such as VOQLx* structured terms.

o—formulas in

PESTO may be viewed as a browsing system
equipped with querying capability based on QBE.
PESTO provides a nice user ‘interface as in many
query based on QBE.
However, PESTO lacks a formal semantics. Its
structural
relationships among objects and various set-related
conditions falls short of VOQL* and QUIVER.

Wed like to comment on the user interface of a

other visual languages

expressive capability of representing

querying system implementing VOQL*. We believe
that the user interface of QUIVER is better than that
of PESTO in representing structural relationships,
while PESTO provides better user interface in
specifying conditions than QUIVER does. We believe
that the user interface of a querying system for
VOQL+* should be a hybrid approach of the graphical
approach and the approach based on QBE.

The syntax of VOQL=* has been carefully designed
to visually simulate the syntactic strucuture of logic,
defined on the notions of variables, constants, terms,
and formulas. Due to these characteristics, the syntax
of VOQL+ is intuitive and comprehensible; the
semantics of VOQL#* are clear, concise, and most
importantly, formally defined by induction. We believe
that no other visual query language has formal

semantics inductively defined based on logic.

VOQL :

Even though VOQL* has many good features,

there are many things to be done. In this paper, we

have not specified how to represent projection list and

aggregation operators. We have been defining and

implementing them in the interpretor for VOQLx,

which we have been constructing. The results on

these issues will be presented soon in forthcomping

papers. The current version of VOQL#* is conjunctive.

We are also working on the design of operators such

as negation, disjunction, implication, and alsc on the

scoping problem. We believe that the well-defined

syntax and sematics of VOQL* may enable us to
extend the VOQL* without much difficuity.

(1]

(2

[3]

[4

—

—
[#)]
—

[6

—

{7

—

—
o]
—

(9]

References
Angelaccio, M., Catarci, T., and Santucci, G,
"QBD*: A Graphical Query Language With

Recursion,” IEEE Trans. on Software Engineering,
Vol. 16, No. 10, pages 1150-1163, October 1990.
Bancilhon, F., Delobel, C., and Kanellakis, P.,
Building an Object-Oriented Database System, The
Story of O2, Morgan Kaufmann, San Mateo, CA,
1992.
Beeri, C., "Formal Models for Object-Oriented
Databases,” In Proc. Ist Intl Conf on Deductive and
Object~-Oriented Databases, pages 370-395, Kyoto,
Dec. 1989.
Bertino, E. et al, "Object-Oriented Query
Languages: The Notion and the Issues,” IEEE
Trans. on Knowledge and Data Engineering, Vol. 1,
No. 3, pages 223-237, June 1992.
Cattell, R.G.G et al.,, The Object Database Standard:
ODMG 2.0, Morgan Kaufmann, San Francisco, CA,
1997.
Chavda, M. and Wood, P, "Towards an
ODMG-Compliant Visual Object Query Language,”
In Proc. the 23rd Intl Conf. on Very Large Data
Bases, pages 456-465, Athens, Greece, 1997.
Cruz, I, Mendelzon, A., and Wood, P., "Graphical
Query Language Supporting Recursion,” In Proc
Intl Conf. on Management of Data, ACM SIGMOD,
pages 323-330, 1987.
Czejdo, B., Elmasri, R., and Rusinkiewicz., M., "A
Graphical Data Manipulation Language for an
Extended Entity-Relationship Model,” IEEE
Computer, Vol.23 pages 26-36, Mar.1990.
Frohn, J., Lausen, G., and Uphoff, H., "Access to
Objects by Path Expressions and Rules,” In Proc.
the 20th Intl Conf on Very Large Data Bases, pages
273-284, 1994.

Aoz Fojd F4 AREE Ad Azt AF Do

[10]

[11]

(12]

{13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

163

Goldman, K.]J., Goldman, S.A., Kanellakis, P.C., and
Zdonik, S.B.,, "ISIS: Interface for a Semantic
Information System,” In Proc. Intl Conf on
Management of Data, ACM SIGMOD, pages
328-342, May 1985.

Gyssens, M. et al, "A Graph- Oriented Object
Database Model,” IEEE Trans. on Knowledge and
Data Engineering, Vol.6, No.4, pages 572-586, 1994.
Kifer, M., Kim, W,, and Sagiv, Y., "Querying
Object-Oriented Databases,” In Proc. Intl Conf on
Management of Data, ACM SIGMOD, pages
393-402, San Diego, CA, 1992.

Kim, JH., Han, TS, and Lee, SK., VOQL: A
Visual Object-Oriented Database Query Language
For Visualizing Path Expressions, Computer
Systems, Science and Engineering, accepted to
appear.

Kim, J.H,, Han, T.S,, and Lee, S.K., Visualization of
Path Expressions in a Visual Object-Oriented
Database Query Language, In Proc. Intl Conf. on
Database Systems for Advanced Applications, page
99-108, Taiwan, 1999,

Kim, W, Introduction to
Databases, The MIT Press, 1990.
Mohan, L. and Kashyap, R. L., "A Visual Query
Language for Graphical Interaction With
Schema-Intensive Databases,” IEEE Trans. on
Knowledge and Data Engineering, Vol5, No.5,
pages 843-858, 1993.

Mylopoulos, J., Bernstein, P. A., and Wong, H. K. T.,
"A Language Facility for Designing
Database-Intensive Applications,” ACM Trans. on
Database Systems, Vol.5, No.2, pages 185-207, 1980.
Sockut, G. H., Bums, L. M., Malhotra, A., and
Whang, K-Y., "GRAQULA: A Graphical Query
Language for Entity-Relationship or Relational
Databases,” Data and Knowledge Engineering,
Vol.11, pages 171-202, 1993.

Vadaparty, K., Aslandogan, Y. A., and Ozsoyoglu,
G., "Towards a Unified Visual Database Access,” In
Proc. Intl Conf on Management of Data, ACM
SIGMOD, pages 357-366, 1993.

Carey, M., Haas, L., Maganty, V., and Williams, J.
PESTO: An Integrated Query/Browser for Object
Databases, In Proc the 22th Intl Conf on Very
Large Data Bases, pages 203-214, 1996.

Object-COriented

164 AR 3] =EA cHoletdio) 2 A 27 A A 2 Z(0006)

o 4 2
1982 Agulst AA% A 1990
University of lowa X2kg}8F XA}
19939 University of lowa 4F#3}
dhAL 19923 IEEE 8th International
¥ Conference on Data Engineering®lA)
Her =24 4 19933 99 ~
1997 29 AFdign FRAesa AYFAL 199749 ~
A DU [AAEAS Zupe BAECks dHolE
298 doJeio]2ojA EGAPRAL, WA ©o)
efjo]x Al2El dlolelulo]2 Folo], tHEx|E]| 7)oM)
AN 2AEF, dolelsloss~

