Abstract
In this paper, low level control algorithms of a metal belt CVT are suggested. A feedforward PID control algorithm is adopted for line pressure based on a steady state relationship between the input duty and the line pressure. Experimental results show that feedforward PID control of the line pressure guarantees a fast response while reducing the pressure undershoot which may result in belt slip. For ratio control, a fuzzy logic is suggested by considering the CVT shift dynamics and on-off characteristics of the ratio control valve. It is found from experimental results that a desired speed ratio can be achieved at steady state in spite of the fluctuating primary pressure. It is expected that the low level control algorithms for the line pressure and speed ratio suggested in this study can be implemented in a prototype CVT.