A Simple Lagrangian PDF Model for Wall-Bounded Turbulent Flows

  • Lee, Chang-Hoon (Department of Mechanical Engineering, University of Seoul) ;
  • Kim, Byung-Gu (Department of Mechanical Engineering, University of Seoul) ;
  • Kim, Nam-Hyun (Department of Applied Mathematics, Hongik University)
  • Published : 2000.08.01

Abstract

A simple Lagrangian pdf model is proposed with a new numerical algorithm for application in wall-bounded turbulent flows. To investigate the performance of the Lagrangian model, we minimize model's dependence on empirical constants by selecting the simplest model for turbulent dissipation rate. The effect of viscosity is also included by adding a Brownian random walk calculate the position of a particle. For the no-slip condition at the wall and correct nearwall behavior of velocity, we develop a new boundary treatment for the particles that strike the wall. By applying the model to a fully developed turbulent channel flow at low Reynolds number, we investigate the model's performance through comparison with direct numerical simulation result.

Keywords

References

  1. Chorin, A. J., 1973, 'Numerical Study of Slightly Viscous Flow,' Journal of Fluid Mechanics, Vol. 57, pp. 785-796 https://doi.org/10.1017/S0022112073002016
  2. Dreeben, T. D. and Pope, S. B., 1997, 'Wall-Function Treatment in PDF Methods for Turbulent Flows,' Physics of Fluids, Vol. 9, p. 2692 https://doi.org/10.1063/1.869381
  3. Dreeben, T. D. and Pope, S. B., 1998, 'Probability Density Function/Monte Carlo Simulation of Near-Wall Turbulent Flows,' Journal of Fluid Mechanics, Vol. 357, pp. 141-166 https://doi.org/10.1017/S0022112097008008
  4. Durbin, P. A., 1993, 'A Reynolds-Stress Model for Near-Wall Turbulence,' Journal of Fluid Mechanics, Vol. 249, pp. 465-498 https://doi.org/10.1017/S0022112093001259
  5. Gardiner, C. W., 1997, Handbook of Stochastic Methods' 2nd edition, Springer-Verlag
  6. HardIe, W., 1990, Nonparametric Regression, Cambridge University Press
  7. Howarth, D. C. and Pope, S. B., 1986, 'A PDF Modeling Study of Self-Similar Turbulent Shear Flows,' Physics of Fluids, Vol. 30, No. 4, pp. 1026-1044 https://doi.org/10.1063/1.866301
  8. Karatzas, I. and Shreve, S. E., 1991, Brownian Motion and Stochastic Calculus, 2nd edition, Springer-Verlag
  9. Kim, J., and Moin, P, and Moser, R., 1987, 'Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166 https://doi.org/10.1017/S0022112087000892
  10. Lee, C., Kim, J., Babcock, D. and Goodman, R., 1997, 'Application of Neural Networks to Turbulence Control for Drag Reduction,' Physics of Fluids, Vol. 9, No. 6, pp. 1740-1747 https://doi.org/10.1063/1.869290
  11. Minier, J. -P, and Pozorski, J., 1997, 'Derivation of a PDF Model for Turbulent Flows Based on Principles from Statistical Physics,' Physics of Fluids, Vol. 9, No. 6, pp. 1748-1753 https://doi.org/10.1063/1.869291
  12. Minier, J. -P. and Pozorski, J., 1999, 'Wall-Boundary Conditions in Probability Density Function Methods and Application to a Turbulent Channel Flow,' Physics of Fluids, Vol. 11, No. 9, pp. 2632-2644 https://doi.org/10.1063/1.870125
  13. Monin, A. S. and Yaglom, A. M., 1975, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, p. 359
  14. Pope, S. B., 1985, 'PDF methods for turbulent reactive flows,' Prog. Energy Combust. Sci., Vol. 11, pp. 119-192 https://doi.org/10.1016/0360-1285(85)90002-4
  15. Pope, S., B., 1994, 'Lagrangian Pdf Methods for Turbulent Flows,' Annu. Rev. Fluid Mech., pp 23-63 https://doi.org/10.1146/annurev.fl.26.010194.000323
  16. Pope, S. B. and Chen, Y. L., 1990, 'The Velocity-Dissipation Probability Density Function Model for Turbulent Flows,' Physics of Fluids A, Vol. 2, No. 8, pp. 1437-1449 https://doi.org/10.1063/1.857592
  17. Sawford, B. L., 1991, 'Reynolds Number Effects in Lagrangian Stochastic Models of Turbulent Dispersion,' Physics of Fluids A, Vol. 3, pp. 1577-1586 https://doi.org/10.1063/1.857937
  18. Taylor, G. I., 1921, 'Diffusion by Continuous Movements,' Proc. London Math. Soc., Vol. 20, pp. 196-212 https://doi.org/10.1112/plms/s2-20.1.196
  19. Tsuji, Y. and Nakamura, I., 1999, 'Probability Density Function in the Log-Law Region of Low Reynolds Number Turbulent Boundary Layer,' Physics of Fluids, Vol. 11, No. 3, pp. 647-658 https://doi.org/10.1063/1.869936
  20. van Dop, H., Nieuwstadt, F. T. M. and Hunt, J. C. R., 1985, 'Random Walk Models for Particle Displacements in Inhomogeneous Unsteady Turbulent Flows,' Physics of Fluids, Vol. 28, No. 6, pp. 1639-1653 https://doi.org/10.1063/1.864956