Feature Extraction Method Using the Bhattacharyya Distance

Bhattacharyya distance 기반 특징 추출 기법

  • Choi, Eui-Sun (Dept. Electrical and Electronic Eng., Yonsei University) ;
  • Lee, Chul-Hee (Dept. Electrical and Electronic Eng., Yonsei University)
  • 최의선 (연세대학교 전기.전자공학과) ;
  • 이철희 (연세대학교 전기.전자공학과)
  • Published : 2000.11.25

Abstract

In pattern classification, the Bhattacharyya distance has been used as a class separability measure. Furthemore, it is recently reported that the Bhattacharyya distance can be used to estimate error of Gaussian ML classifier within 1-2% margin. In this paper, we propose a feature extraction method utilizing the Bhattacharyya distance. In the proposed method, we first predict the classification error with the error estimation equation based on the Bhauacharyya distance. Then we find the feature vector that minimizes the classification error using two search algorithms: sequential search and global search. Experimental reslts show that the proposed method compares favorably with conventional feature extraction methods. In addition, it is possible to determine how man, feature vectors arc needed for achieving the same classification accuracy as in the original space.

Bhattacharyya distance는 패턴 분류 문제에 있어서 클래스간 분리도 측정의 수단으로 사용되어 왔으며 특징 추출 시 유용한 정보를 제공한다. 본 논문에서는 최근 발표된 Bhattacharyya distance를 이용한 에러 예측 기법을 이용하여 예측된 분류 에러가 최소가 되는 특정 벡터를 추출하는 방법에 대하여 제안한다. 제안한 특징 추출 기법은 최적화 알고리즘인 전체탐색 및 순차탐색 방법의 적용 시 분류 에러를 직접 구하지 않고 Bhattacharyya distance를 이용하여 분류 에러를 예측하므로 고차원 데이터의 경우 고속의 특징 추출이 가능하며, 에러 예측 성질을 이용하여 패턴 분류 시 필요한 최소 특징 벡터의 수를 예측할 수 있는 장점이 있다.

Keywords

References

  1. J. A. Richards, Remote Sensing Digital Image Analysis, Springer-Verlag, 1993
  2. R. O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons, 1973
  3. K. Fukunaga, Introduction to Statistical Pattern Recognition, New York: Academic Press, 1990
  4. D. Foley, J. Sammon, 'An Optimal Set of Discriment Vectors,' IEEE Trans. on Computers, vol. c-24, no. 3, 1975
  5. C. Lee and D. A. Landgrebe. 'Feature extraction based on decision boundaries,' IEEE Transaction on Pattern Analysis and Machine Intelligence. vol. 15, no. 4, pp, 388-400, 1993 https://doi.org/10.1109/34.206958
  6. C. Lee and D. A. Landgrebe, 'Error estimation of the Gaussian ML classifier.' IEEE International Symp. on Information Theory, pp. 535-535, 1997 https://doi.org/10.1109/ISIT.1997.613472
  7. C. Lee, E. Choi, 'Bayes Error Evaluation of Gaussian ML Classifier,' IEEE Trans. on Geoscience and Remote Sensing, 1999.(인쇄중) https://doi.org/10.1109/36.843045
  8. C. Lee, E. Choi, J. Kim, 'Optimal Feature Extraction for Normally Distributed Data,' SPIE AeroSense '98, pp. 223-232, 1998
  9. C. Lee and D. A. Landgrebe, 'Decision boundary feature extraction for neural networks,' IEEE Trans. Neural Networks, Vol. 8. No. 1, pp. 75-83, 1997 https://doi.org/10.1109/72.554193
  10. C. G. Cullen, Matrices and Linear Trans-formation, Addison_wesley Publishing Company, 1972
  11. L. L. Biel and et. al., 'A Crops and Soils Data Base For Scene Radiation Research.' Proc. Machine Process. of Remotely Sensed Data Symp., West Lafayette, Indiana, 1982