초록
K개의 인식기로부터 관찰된 K개 결정을 결합하는 결합 방법론 중의 하나인 BKS (Behavior-Knowledge Space) 방법은 아무런 가정 없이 이들 결정을 결합하지만, 관찰된 K개 결정을 저장하고 관리하려면 이론적으로 기하학적인 저장 공간을 만들어야 한다. 즉, K개의 인식기 결정을 결합하기 위하여 (K+1)차 확률 분포를 필요로 하는데, 작은 K라 할지라도 그 확률 분포를 저장하거나 평가하는 것이 어렵다는 것은 이미 잘 알려져 있다. 그러한 문제점을 극복하기 위해서는 고차 확률 분포를 몇 개의 구성 분포로 나누고, 이들 구성 분포의 곱(product)으로 고차 확률 분포를 근사시켜야 한다. 그러한 이전 방법 중의 하나는 그 확률 분포에 조건부 독립 가정을 적용하는 것이고, 다른 방법으로는 [1]에서와 같이 그 확률 분포를 단지 트리 의존관계 또는 2차 구성 분포의 곱으로 근사하는 것이다. 본 논문에서는, 구성 분포의 곱으로 근사하는 방법에서, 2차 이상의 고차 구성 분포까지 고려하여 (K+1)차 확률 분포를 d차 ($1{\le}d{\le}K$) 의존관계에 의한 최적의 곱으로 근사하고, 베이지안 방법과 그 곱을 기반으로 다수 인식기의 결정을 결합하는 의존관계 기반의 프레임워크를 제안한다. 이 프레임워크는 표준 CENPARMI 데이타베이스로 실험되어 평가되었다.
Although Behavior-Knowledge Space (BKS) method, one of well known decision combination methods, does not need any assumptions in combining the multiple experts, it should theoretically build exponential storage spaces for storing and managing jointly observed K decisions from K experts. That is, combining K experts needs a (K+1)st-order probability distribution. However, it is well known that the distribution becomes unmanageable in storing and estimating, even for a small K. In order to overcome such weakness, it has been studied to decompose a probability distribution into a number of component distributions and to approximate the distribution with a product of the component distributions. One of such previous works is to apply a conditional independence assumption to the distribution. Another work is to approximate the distribution with a product of only first-order tree dependencies or second-order distributions as shown in [1]. In this paper, higher order dependency than the first-order is considered in approximating the distribution and a dependency-based framework is proposed to optimally approximate the (K+1)st-order probability distribution with a product set of dth-order dependencies where ($1{\le}d{\le}K$), and to combine multiple experts based on the product set using the Bayesian formalism. This framework was experimented and evaluated with a standardized CENPARMI data base.