ZG-machine?l A 719} A4 AL AAY I 759

ZG-machineollA 719 A4 A A A9 4
(Effect of Garbage Collection in the ZG-machine)

e T aeHs"
(Gyun Woo) (Taisook Han)

2 2 ZG-machine HlIa&elgte S #3533 71He AUt T 584 G-machine®]th
719 A2 AL AA Qo] A3 oA APoA ZG-machinee G-machined} Blne 30%9 @ F
e AGF F AUT F8 A7 B 6%E WA Uk o] =FolMe ZG-machines] 719 Fa
AEE AAE AIetd F7iz APF 2AES A3t @] wEW, G-machinedt vlmP o,
7ZG-machined] 58 AIZEE 34% Z71tEAT Ha § AHEFe BF 34% AT F3 AL BE
o] AN olfE 719 AL AEE AAwEelth 2y F FHE A 3 AMEFY 7 o) A== RS
7% G-machined] gt 43 A7t 2e 12%E YR &%}t ZG-machinedl X A g ALgFo] &
& 542 ZG-machine®} WF AA} 22 719 Fivt AFE 8§ £ob A2 F UL gnig
o} E3 Bk 839 719 Fa ATE AAE NP2 £ NS AP3) Z2olE AR A%
b21-3

Abstract The ZG-machine is a space-efficient G-machine, which exploits a simple encoding
method, called tag-forwarding, to compress the heap structure of graphs. Experiments on the
ZG-machine without garbage collection shows that the ZG-machine saves 30% of heap space and the
run—time overhead is no more than 6% than the G-machine. This paper presents the results of further
experiments on the ZG-machine with the garbage collector. As a result, the heap-residency of the
ZG-machine decreases by 34% on average although the run-time increases by 34% compared to the
G-machine. The high rate of the run-time overhead of the ZG-machine is incurred by the garbage
collector. However, when the heap size is 7 times the heap-residency, the run-time overhead of the
ZG-machine is no more than 12% compared to the G-machine. With the aspect of reduced
heap-residency, the ZG-machine may be useful in memory-restricted environments such as embedded
systems. Also, with the development of a more efficient garbage collector, the run-time is expected

to decrease significantly.

1. Introduction

Lazy functional languages facilitate fast—-prototyp-
ing by abstracting the execution flow of programs.
Basically, functional programming languages provide
more abstraction mechanisms than imperative ones:
algebraic data types abstracts away the memory

CE 97E AVYEYE ATAHEE Soe Hakany AU Bk

t A3 9 Forigtn ANAAPFEFAR e
woogyun@daunet.donga.ac.kr
 Z2A59 . dxAried AAANT u
han@pllab.kaist.ac.kr
=EFHS 0 1999@ 109 8Y
At 20008 49 39

access; higher order functions increase the modu-
larity of the programs. Lazy functional languages
further abstract the control flow of programs by
evaluating expressions on demand.

Graph reduction is a well-known way to im-
plement lazy functional languages. However, it
generally requires a lot of heap space to execute a
program. In graph reduction, an expression is
represented as a graph and the evaluation of the
expression is achieved by transforming the graph.
The transformation is performed repeatedly until
the result is the simplest form, i.e., the value of the

initial expression. Many intermediate graphs con

760 AR E=ER] AT E 9

structed during the sequence of transformations are
stored in heap, hence graph reduction generally
requires a lot of heap space.

Tag-forwarding is a simple encoding method to
reduce the heap space required to store the graphs.
Tag-forwarding concerns the tagged representation
of graphs, where the graph node is composed of a
tag and some data fields. The G-machine [1, 2] is
a typical example which adopts tagged repre-
sentation. In tagged representation, the tag of a
graph node is generally stored in a whole heap
word. This is certainly a waste of space because
only a few bits are sufficient to store a tag.
Tag-forwarding is a method to utilize the
remaining bits of the tag word.

The space inefficiency incurred by storing a tag
in a single heap word was pointed out by Peyton
Jones [3, page 325]. For a rationale of this inef-
ficiency, he used the example of the Chalmers Lazy
ML implementation, where each tag is implemented
by the entry address of the dispatch table to the
With this

comparison operation for jumping to the run-time

run-time routines. implementation, a
routine can be saved because the tag does not need
to be tested before jumping.

We implemented tag-forwarding on top of the
G-machine, resulting a new abstract machine called
the ZG-machine. Besides the comparison operations
with
operations. Since tag-forwarding uses encoding, it

tags, tag-forwarding requires additional
incurs some operations for decoding. The operations
for decoding are imposed on run-time. On the other
hand,

run-time. The number of memory references for

tag-forwarding has a beneficial effect on

graphs is reduced because the graphs are highly
encoded.

The previous experiments {4] on the ZG-machine
showed promising results: the total heap allocation
decreased about 30% on average and the run-time
increased no more than 6% compared to the
G-machine. The experiments were performed using
the C translators of the G- and the ZG-machines.
However, the previous experiments were performed
without garbage collectors.

2 & A 27 A A 7 520007

In this article, we report the results of more
concrete experiments on the ZG-machine. To get a
more realistic view, we have implemented the
garbage collectors of the G- and the ZG-machines.
With garbage collectors, we can examine another
perspective of the space behavior, ie., the
heap-residency. The heap-residency of a program
denotes the minimum size of the heap required to
execute the program with the garbage -collector
equipped.

Though the G-machine is a rather old machine,
it is still popular due to its compact definition.
There are some variants of the G-machine, for
example, Spineless G-machine [5] and Spineless
Tagless G-machine [6], each of which generally
the

G-machine is preferred in some applications [7, 8§,

outperforms the G-machine. However,
9] because its definition is simpler than those of its
variants. The ZG-machine is another variant of the
G-machine aiming for a better space behavior.

This article is organized as follows. Section 2
explains the basic idea of tag-forwarding and
considers the performance-affecting factors of the
ZG-machine. Section 3 describes the implementation
of the experimental systems and the experimental
results, and discusses the limitations of our
experiments. Section 4 reviews related works and

Section 5 concludes.

2. Tag-forwarding

Tag-forwarding [4] is a simple encoding method
which aims for the encoded graph to be smaller
than the original graph. A graph in the G-machine
is a linked structure of nodes, each of which has a
tag and one or more data fields. All links are
implemented by absolute pointers which are stored
in the data fields of nodes. If we know that a part
of a graph is allocated at the same time, we can
treat the part as an allocation unit and allocate it
Then the
intra-links between the nodes in the allocation unit

in a sequential addressing space.

can be implemented by relative address pointers.
These relative addresses can be computed at

compile-time and stored in a smaller heap space

{b) the graph compressed by tag-forwarding

(a) a normal G-machine graph

Figure 1: The basic idea of tag-forwarding,.

than the absolute counterparts. Tag forwarding is a
wayg to merge the relative address and the tag
into one heap word.

The basic idea of tag-forwarding is depicted in
Figure 1. The triangular chunks denote the detected
allocation units of the graphs in the G-machine. In
links

run-time as depicted in Figure 1(a). However, the

the G-machine, all graph are wired at
intra-links in a chunk can be wired at compile-
time, as depicted by the dashed arrows in the
chunks in Figure 1(b). We can reduce the size of
the chunks if we forward the tags to the relative
pointers and store the tags with the pointers. This
procedure is called tag-forwarding. Consequently,
the heap can be saved in the amount corresponding
to the number of tag words forwarded.

Although

compile-time, decoding the tag-forwarded graphs

tag-forwarding can be encoded at
must be performed at run-time. In the tag-
forwarded graphs, the tag and the relative address
are paired and stored in a heap word. Therefore,
some extracting operations are needed to look up
the tag or the relative address. Moreover, we need
a flag to distinguish absolute address links from
relative address links because they are intermixed
in the tag-forwarded graphs. The test of the flag
has to be performed at run-time, too. Since the
tag-forwarding scheme is in fact just an encoding,
it inevitably needs some decoding operations that
cause run-time overhead.

The encoding overhead of tag-forwarding is
mostly imposed on compile-time. However, it also
affects the garbage collection. Normally the graphs
need not be reconstructed.

once constructed

However, during the garbage collection, the graphs

ZG machinedl M 719 F& A8-E& AA e g 761

should be reconstructed to provide a chunk of free
space in the heap. The relative address links have
to be modified during reconstruction, which incurs
some encoding operations of tag-forwarding. The
encoding operations during the garbage collection
also cause the run-time overhead of
tag -forwarding.

Up to now, the factors leading to run-time
overhead were discussed; however, tag-forwarding
is not always bad for run-time. The number of
heap references is reduced by tag-forwarding
because the graph size is reduced. The number of
memory fetch operations for the heap data is less
than that of the G-machine. Most of the additional
operations involved in tag-forwarding are performed
in a fast pipelined processor and the reduction of

memory traffic for the heap data might be more

significant than the increase of the additional
computation.
The above argument about the run-time

overhead of tag-forwarding is rather controversial.
To get a realistic view on the performance of the
tag-forwarding scheme, some experiments were
performed. The main goal of the experiments is to
compare the G-machine and the ZG-machine, a
modified version of the G-machine performing
tag-forwarding. The definition of the ZG-machine

is described in [4].

3. Experiments

Normally, the ZG-machine uses less heap space
than the G-machine. At most, it uses equal heap
space to the G-machine, which is the case when
there are no intra-links in the allocation units of
the graphs. A heap word will be saved if an
intra-link is converted to a relative address and
merged with the tag of the node pointed to by the
intra-link.
apparent that the ZG-machine

Concerning the heap usage, it is
is more efficient
than the G-machine.

Concerning the run-time, the ZG-machine seems
slower than the G-machine. The ZG-machine has
many factors which cause a delay in run-time. In

the ZG-machine, the flag test operations and the

762 ARAGEEEA LZEYY g & A 27 F A T ZQ007)

field extracting operations are additionally needed to
decode the tag-forwarded graphs. The garbage
collector also incurs the burden of encoding. In the
ZG-machine, there is one positive factor for
run-time: the memory traffic for referencing graphs
is reduced.

3.1 The Implementation

Both the G- and the ZG-machines are imple-
mented in the same framework. For a quick imple-
mentation, we choose a two-pass implementation:
first, the

definitions, is translated to the M-code; and second,

source code, a set of combinator
the M-code is translated to the C program. The
M-code [10], used in implementing the Chalmers
Lazy ML Compiler, is an abstraction of native
machine code which is specialized for translating
G-machine code. In our implementation, the M-code
is extended to include operations related to
tag-forwarding. The translators of the abstract
machines generate two different C programs from
the same source code. The C programs are
compiled and executed to get the statistics.

This two-pass implementation has some benefits.
First of all, we can share the code which translates
the M-code into the C program. Second, it enables
fast prototyping by translating the source program
into a C program. Third, it is easier to add the
monitoring code for the execution profiles to the C
program than to the native machine code. Getting
the execution profiles is our main concern in the
experiment. The laziness of a source program is
implemented by graph construction codes in the
target C program.

Besides the additional encoding performed by the
garbage collector of the ZG-machine, there is an
important difference between the garbage collectors
of two machines. We use copying algorithms in
implementing the garbage collectors. There are two
classical algorithms for copying collectors: one is
recursive [11] and the other is non-recursive [12].
The latter is generally faster than the former.

However, we cannot use the non-recursive
algorithm for the ZG-machine. In the ZG-machine,

since the tag of a graph node is separated from

data fields and forwarded,
collector has to follow the pointers in a depth-first

other the garbage
search manner. Hence, the garbage collector of the
ZG-machine is implemented using the recursive
algorithm,

One of the reason of adopting the recursive
algorithm for the garbage collector of the ZG-
machine is to compare the machines in a more fair
condition. If an additional one-bit flag for primitive
data types is used for implementation of the
ZG-machine, the non-recursive algorithm can be
used for the garbage collector of the ZG-machine.
However, adopting the additional flag makes the
primitive data type of the ZG-machine cover less
range than that of the G-machine. Hence, we use
the natural recursive algorithm for the garbage
collector of the ZG-machine. In any case, further
optimization of the garbage collectors can be
considered as a future work.

3.2 Experimental Results

The experiment concerns mainly two points. One
is how much heap space can be saved by
tag-forwarding and the other is how much the
run-time overhead will be. There are two factors
concerning the heap space: the total heap allocation
and the heap-residency. The total heap allocation is
the sum of all heap words allocated during an
execution. If sufficient memory up to this size is
provided, the garbage collector will never be
invoked. The heap-residency is the minimum size
of the

program with the garbage collector equipped. If the

heap memory required to execute the
heap memory provided is less than the
heap-residency, the program will run out of space
and cannot be completed.

For the actual meaning of the heap-residency, let
us first consider the meaning of the residency of a
program. The residency of a program at a
particular moment is the size of the graph at that
We can think of the

maximal residency of a program as the largest

moment (3, page 403].

residency value attained during the execution of the
program. For a given program, the heap-residency

denotes the actual heap size for the maximal

ZG-machined| A 719} 4 AEE AA Y 9T 763

residency.

As benchmark programs, five small programs
were selected from the imaginary subset of the
nofib benchmark suite of Haskell programs [13]D.
Since the full Haskell language is not implemented
in the experimental system, we had to translate
programs by hand from Haskell into the source
language of the experimental system. Hence, small
programs are selected. The selected programs can
be briefly described as following:

« exp: Computation of 3 powered by 8 where the

numbers are encoded by data structures.

 nfib: The nfib function, which is similar to the
fib function returning a Fibonacci number, with
the argument 30.

s primes: The first 300 primes using Eratho-
stene’s sieve.

- queens: The number of solutions of the '10
queens’ problem, which is an extended version
of the '8 queens’ problem.

»tak: The tak function with arguments 24, 16,
and 8.

Though the exp function just computes 38, it
generates a lot of live graphs during run-time
because the integers are represented by data
constructors in the program, and furthermore the
graphs for them are hardly destroyed until the
program ends. Nfib and queens generate a lot of
pending applications because these extensively
recursive functions are computed lazily. Primes and
queens are using list data structures extensively,
but the size of live graphs generated by these
programs seem to be small because the live list
data structures are destroyed rapidly since they
perform a lot of backtracking.

GNU C compiler version 2.7.2.3 was used to get
the executable from the C programs generated by
the experimental system. The executables were
timed on a SUN SPARC 20 UNIX system. We
used the C library function times, taking the sum

of user and system times as the total execution

1) We do not insist that the experiment is performed on
the nofib benchmark suite, since the entire real subset
of nofib is not covered by the experiment.

Table 1 The space efficiency of the ZG-machine

(a) Heap-residency
(unit: KB)

average

exp | nfib [primes|queens| tak
G-machine 463 8 310 420 43 —
ZG-machine 309 6 180 259 29 —
inc. rate -33%| -25%| -42%| -38%| -33%| -34%

(b) Total heap allocation

(unit: KB)
exp | nfib |primes|queens| tak [average
G-machine |118,248{182,027| 2,010{ 121474| 193877 —
7G-machine | 86,731|126645| 1551| 92,046| 134443} —
inc. rate -271%| -30%| -23%| -24%| -31%| -27%
time.

Table 1 shows the heap space behavior of the
abstract machines for the benchmark programs.
Table 1(a) shows the heap-residency and Table
1(b) shows the total heap allocation. In both cases,
were measured in kilobytes(KB),
is bound within 1 KB. The
increasing rates of the ZG-machine values relative

the statistics
hence the error

to the G-machine values are also shown in Table
1. A negative value of the increasing rate means
that space is saved.

to the on Table 1, the
ZG-machine always requires less heap space than

According results
the G-machine, for both the heap-residency and the

total heap allocation. For each machine, the
heap-residency varied greatly depending on the
programs. For the test programs, the heap-
residency of the G-machine varied from 8 KB to
463 KB, and that of the ZG-machine varied from 6
KB to 309 KB. The total heap allocation also
varied greatly depending on the programs.
However, the increasing rate was rather constant.
For all test programs, the heap-residency of the
ZG-machine decreased by 34% on average and the
total heap allocation also decreased by 27% on
average.

Now, let us investigate the run-time overhead.
Table 2 shows the run-time behavior of the
For all

run-time of each machine was measured with

ZG-machine. benchmark programs, the

764

Table 2 The run-time overhead of the ZG-

machine

(unit: 10ms)

multiplier 1 2 3 4 5 6 7
GM 6221 3839 3578| 3490f 3464] 3462| 3476
exp [ZGM 8872 4722| 4286) 4099 3950f 3934| 3852
inc. rate | 43%] 23%| 20%| 17%| 14%| 14%| 11%
GM 14997} 5109| 4378| 40%| 3937| 38%4| 3771
nfib [ZGM 17479| 5823 4788| 4423| 4216| 4099 4021
inc. rate | 17%| 14%| 9%| 8%| 7%| 7% %
GM 273 8 74 7 7l 7 69
primes |ZGM Bl 111 87 8 81y 7B T
inc. rate | 29%| 26%| 18%| 17%| 14%| 11%| 12%
GM 12041} 4647 4231| 4080 4021| 4022| 4007
queens|ZGM 16625 5361 4717 4484] 4354| 4285| 42
inc. rate | 38%| 15%| 11%| 10%| 8% 7%| 6%
GM 6389 4006 3521 3358 3219 3163| 3126
tak |[ZGM 9116 4836 3998| 3622| 3448| 3317| 3241
inc. rate | 43%| 219 14%| 8%| 7%| 5%| 4%
average inc. rate | 34%| 20%] 14%| 12%| 10%| 9%| 8%

different heap sizes. For each execution, the heap

size was set to the value of the heap-residency
multiplied by the number shown in the top row of
the table. For each program, the increasing rate of
the execution time of the ZG-machine compared to
that of the G-machine is also shown. According to
the results, the ZG-machine is much slower than
the G-machine when the heap constraint is severe.
When the heap is

residency, the average increasing rate reaches up to

set exactly to the heap

34%. However, when the heap constraint is re-
lieved, the run-time overhead of the ZG-machine is
reduced. Typically, when the heap memory is set
to seven times the heap-residency, the run-time
overhead of the ZG-machine is less than 129 for
all test programs.

The garbage collector of the ZG-machine seems
to be responsible for the high increasing rate of the
run-time when the heap constraint is severe. When
the heap is set to the heap-residency, the numberof
calls to the garbage collector is maximal, hence

the garbage collector greatly affects the overall

AEAZRI=EA AZEO] F & A 27 H A T B Q207

nfib

T T T
2 3 4 5 8 7

exp

nfib

T T T T T
1t 2 3 4 5 6 7

Fig. 3 The garbage collection time vs

heap size

ZG-machines| 4} 719 &2 NE& AA) 98 765

zae o oM

b ep
o nfib
v primes
4 queens|
> tek

T 7 T T 7
1.2 3 4 5

Fig. 4 graph reduction time vs heap size

run-time. 2, 3 and 4

interpretation. Figure 2 depicts the overall run-time;

Figure support this
Figure 3 and Figure 4 depict the garbage collection
time and the graph reduction time, respectively.
Figure 2 and Figure 3 show the same decreasing
behavior. However, Figure 4 shows that the graph
reduction time almost remains constant independent
to heap size. This means that the garbage
collection overhead dominates the overall run-time
overhead of the ZG-machine,

The overhead of the copying

proportional to the size of live graphs. According to

collector is

the experimental results, exp and tak show the
worst performance when the heap constraint is
severe. As mentioned above, since exp generates a
lot of live graphs which burden the garbage
collector. Nfib and tak are both generating a lot of
the size of the
graphs for pending application for tak is bigger

pending applications. However,

than that for nfib because tak has four recursive

calls and nfib has only two. Therefore, the garbage
collection time for tak is higher than that of nfib.
Though primes and queens are extensively using
data constructors like exp, the size of live graphs
for them seems not so big compared to exp
because these programs perform a lot of back~
tracking. Hence, the garbage collection overhead of
these programs is less than that of exp.

To make the ZG-machine practical, the garbage
collection overhead of the ZG-machine should be
relieved. As mentioned before, the garbage collector
of the ZG-machine has the burden of encoding and
was implemented using a recursive algorithm. A
recursive algorithm has more call/return overhead
than a non-recursive algorithm. We are currently
working on developing an efficient algorithm for
garbage collector of the ZG-machine.

When generating the results shown in Table 2,
the heap size was set as the multiple of the
heap-residency, but the heap-residency of the
ZG-machine was less than that of the G-machine.
To compare the machines in the same condition,
the execution time should be measured with a heap
of the same size. Table 3 shows the result when
the heap is set to 1 and 2 megabytes(MB). The
increasing rate of the execution time of the
ZG-machine is on average 8% when the heap is of
1 MB, and 5% when 2 MB. The run-time overhead
of the ZG-machine is tolerable in these cases.

In summary, the ZG-machine is more efficient

than the G-machine space-wise but less efficient

Table 3 The run-time overhead of the ZG-

machine with the heap size fixed

(unit: 10ms)

exp | nfib| primes Jqueens| tak |average

G-machine | 3945] 3610 75| 4465! 3461 -

1 MB |ZG-machine | 5284| 3787 8| 4671 2999 -

inc. rate 3A%| 5% 8% 5%; -13% 8%

G-machine | 3443 3538 691 39%) 2920 —

2 MB |ZG-machine | 3868] 3702 5| 4180 2823

inc. rate 12%| 5% 9% % 3% 5%

766 AEAGI=A

time-wise. Both the heap-residency and the total

heap allocation decrease in the ZG-machine,

compared to the G-machine. However, the
ZG-machine is slower than the G-machine when
the heap constraint is severe. But it is compatible
with the G-machine when given a heap of the
same size. The garbage collector is responsible for
the high rate of the run-time overhead of the
ZG-machine in the space-critical cases. To
overcome the deficiency of the ZG-machine, an
efficient garbage collector is particularly necessary.

3.3 Caveats

Our experiments have a few limitations. First of
all, the experiments are not based on real compilers
but on C translators. This means that the execution
time of the real compiler may differ from that of
though the

consumption does not seem to be far from accurate.

the experimental results, space
Secondly, the implementations are not full compilers
of lazy functional languages but only concern the
* back-ends of the compilers. All optimizations and
transformations related to the
excluded. In fact, the
compilers are based on the work by Peyton Jones
and Lester [14]. Lacking the front-end of a full

we had to syntactically translate the

front-end are
implementations of both

compiler,
Haskell benchmark programs by hand. Therefore,
we selected small programs.

One might think the benchmark programs are too
small to expect any meaningful information from
the results. However, they are sufficient for testing
the effect of the ZG-machine because the effect of
tag-forwarding is proportional to the size of the
allocation unit, and larger allocation units can be
found more easily in larger programs. Hence, if the
ZG-machine is effective on small programs, it is
highly expected to be even more effective on larger

programs.

4. Related Work

The tag-forwarding method 1is similar to
NORMA [15]

memory are encoded. A graph node in NORMA is

in that the words in the graph

a 64-bit word, which is highly encoded to include

AZEY Z &8 A 27 B A7 507

all node types. This complicated encoding is

supported by specialized hardware, which is
different from our approach. There is no special
hardware support for tag-forwarding, for it is just
a simple encoding.

It seems that there has not been much concern
about space efficiency in lazy functional languages.
Haydarlow and Hartel introduced thunk-lifting [16],
a program transformation which aims to reduce the
Thunk-lifting

tag-forwarding is

heap space. is based on context

analysis, but applicable for
almost every lazy context. Wakeling applied the
dynamic compilation technique to the G-machine
and reduced the code size significantly [17] Our
approach can be considered complimentary to
Wakeling's, for his work concerns the code space
and ours concerns the heap space.

Tag-forwarding can be aiso applied to the
variants of the G-machine which are using tags for
representing graphs. The Spineless G-machine and
the \nuG-machine [18] are the

Especially, the

examples.

Spineless G-machine provides
another method to reduce the memory traffic
between the reduction engine and the graph store.
further by applying

tag-forwarding to the Spineless G-machine, but the

We can reduce it

decoding overhead shall be still remains. To
investigate the actual performance of these possible
variants of the ZG-machine, further experiments

should be performed.

5. Conclusion

This article describes the basic idea and the
experimental statistics of the ZG-machine, which
requires less heap space than the G-machine.

According to the experimental results, the
heap-residency of the ZG-machine decreases by
34% and the total heap allocation decreases by 27%
on average, compared to the G-machine. When the
heap size is set to the heap-residency, the run-time
overhead of the ZG-machine is much higher than
that of the G-machine; the increasing rate of the
run-time reaches up to 34%.

It seems that the garbage collector is responsible

ZG-machined| A 71¢] &4 AEE A 4%

for the high overhead of the run-time when the
heap constraint is severe. Currently, the garbage
collector of the ZG-machine is less efficient than
that of the G-machine. Therefore,
overhead of the ZG-machine decreases rapidly as

the run-time

the heap constraint is relieved. Typically, if the
heap size is set to 7 times the heap-residency, the
increasing rate of the run—time of the ZG-machine
does not reach more than 12%. In any case,
developing a fast garbage collector is particularly
important for the ZG-machine.

Reduced heap-residency in the ZG-machine is an
important property. In some computing
environments, say for embedded systems, memory
this the
ZG-machine promotes the possibility of using lazy
The

mobile

is a valuable resource. In respect,

functional languages in such environments.

ZG-machine can be also applied to

computing environments, for a process image
becomes compact in the ZG-machine so that it can
be moved among processors more quickly. In the
usual computing environment for a given program,
the ZG-machine can cover larger input instances
than the G-machine because the heap-residency is

smaller.

References

[1] L. Augustsson, "A Compiler for Lazy ML,” In
Proceedings of the 1986 ACM Conference on
Lisp and Functional Programming, pages 218-227,
August 1984,

[2] T. Johnsson, "Efficient compilation and lazy
evaluation,” In Proceedings o the ACM
SIGPLAN ‘84 Symposium on Compiler

Construction, pages 58-69, June 1984.
S. L. Peyton Jones, The Implementation of
Functional Programming Languages, Prentice
Hall, 1987.

G. Woo and T. Han, "Compressing the Graphs in
G-machine by Tag-Forwarding,” Journal of the
Korea Information Science Society, 26(5):702-712,
May 1999,

G. L. Bumn, S. L. Peyton Jones, and J. D. Robson,
"The spineless G-machine,” In Proceedings of the
1988 ACM Conference on Lisp and Functional
Programming, pages 244-258, July 1983.
[61S. L. Peyton Jones, "Implementing

(3]

[4]

[5]

Lazy

[7]

(8l

[9]

[10]

(11}

(12]

f13]

(14]

{15]

(161

[17]

{18}

767

Functional Languages on Stock Hardware: the
Spineless Tagless G-machine,” Journal of
Functional Programming, 2(2):127-202, July 1992.
M. P. Jones, Hugs 13 User Manual — The
Haskell User’s Gaofer System, August 1996,

D. Wakeling, "A Haskell to Java Virtual Machine
Code Compiler,” Proceedings of the 1997
International Workshop on the Implementation of
Functional Languages, pages 39-52, September

1992.

G. Meehan and M. Joy, "Compiling Lazy
Functional Programs to Java Bytecode,”
Software-Practice and Experience, 29(7):617-645,
June 1999.

Thomas Johnsson, Compiling Lazy Functional
Languages, PhD thesis, Chalmers Tekniska

Hogskola, Goteborg, Sweden, January, 1987.

R. R. Fenichel and J. C. Yochelson, "A LISP
Garbage Collector for Virtual Memory Computer
Systems,” Communications of the ACM,
12(11):611-612, November 1969.

C. J. Cheney, "A Non-recursive List Compacting
Algorithm,” Communications o the ACM,
13(11):677-678, November 1970.

W.. Partain, ”"The nofib Benchmark Suite of
Haskell Programs,” In J. Launchbury and P. M.
Samson, editors, Functional Programming,
Glasgow, Workshops in Computing, pages
195-202, Springer Verlag, 1992.

S. L. Peyton Jones and D. R. Lester, Implement-
ing Functional Languages: a tutorial, Prentice
Hall, 1991.

M. Scheevel, "NORMA: a graph reduction pro-
cessor,” In Proceedings of the 1986 ACM Con-
ference on Lisp and Functional Programming,
pages 212-219, August 1986.

A. R. Haydarlou and P. H. Hartel, "Thunk Lifting:
Reducing Heap Usage in an Implementation of a
Lazy Functional Language,” Journal of Functional
and Logic Programming, 1(1):1-24, August, 1995.
D. Wakeling, "The Dynamic Compilation of Lazy
Functional Programs,” Journal «of Functional
Programming, 8(1):61-81, January 1998.

L. Augustsson and T. Johnsson, "Parallel Graph
Reduction with the <y, G>-machine,” In Proceed-
ings of the ACM Conference on Functional Pro-
gramming Languages and Computer Archi-
tecture, pages 202-213, 1989.

768 ARYGIH=FA £ZEY ¥ & A 27 A A 7 200D

$ 7

19019 29 ¥FAEIIeq AV} AL
19934 24 BEHN7IEd AN AL
| 2000 29 BFHNIEY WA whAL
A Folista AV AARFETRY
YL BBk AD §4E Aol
o 78% olF A% 4 /A, xEa

Eige I

1976 AMgugtn dAxREFtH 4.
19783 F=Hst71E&d Adsty E9
1990'd Univ. of North Carolina at
Chapel Hill £¢. €A =g ried
FARRESE RuF FY Eoke ==

Zad AoE, #43 Adojq.

