oA @9 AZEgo] AAS g A4 7uk WA

ek

IR 691

vl A k9] AZ Edo] AAE 93t
g AN Wy AR el we
(An Operation-Based Model of Version Storage and Consistency
Management for Fine—Grained Software Objects)

YR exe"
(Jungkyu Rho) (Chisu Wu)

2 o £ZEgO] BAE £Ee =¥ AAYG AAY BAR o|Fo|W 7RI AT JoH
FE7L sl WA" & Ak B =RdAe Mreonoa d43 BAolN HE4EEe g Awe
A @9 Azedel AA) wiAd 2 A

#e 2dS AQAT RE AZEYO] A dideR
EH#o|2E 7pAm A #ye dind oﬁﬂ*‘l olfolAdh HA7IE Tt AR Hid A
?'fl’\EEMI 71553 B Feeh £ZEo] 7 8438 4B e o8t A9
EdE o8 detg oj8dte] AL HYHEE P FEE AY Blu HAo] P

flo ox

o ® g ® g

Aol
,t
N o{t

g wae\ W7 e A4 Resel WA A% 4RE BRAE & Utk AWl Yk Q@
& AL %—»:— 33 AA HEH Qi) FRe) o) BYHEE 2RAF ¥4 Ak AY 5 9

f
i
Ha
&
F[‘F

e
o 1
£
2
ot
R
i

AR AW ANe Fte del WA A4 3 o4 w9l YA Y FYAQ

L S T

Abstract Software documents consists of a number of objects and relationships between them,
and structure of documents can be changed frequently. In this paper, we propose a version storage
and consistency management model for fine-grained software objects based on operations applied to
edit software objects. An object has an interface and can be updated only through operations defined
in its interface. Operations applied to objects are recorded in the operation history, which is used to
retrieve versions of a document and manage consistency between documents. BBecause versions of an
object are stored and retrieved using the operation delta, it is not needed to compare versions of a
document to extract delta and it is easy to identify the changes between versions in order to propagate
the changes. Consistencies between documents are managed using dependencies between objects and
kinds of the operations applied to the objects. Therefore unnecessary version propagation can be
avoided. This paper presents a formal model of version retrieval and consistency management at the
fine-grained level based on operations applied to the objects.

1. M2 can be changed frequently. For example, a docu-

) ment may have classes, functions, and relationships
Software documents have logical structure and a .
. . . between classes and functions, and new classes can
lot of objects and relationships between them, and ..
o . be added, some existing classes can be removed, or
both individual objects and structure of documents . .
some relations can be modified. However, most of

the existing software configuration management
t3 8 9 AR FAGTE 97

jkrho@telecom.samsung.co.kr systems maintain a software document as a single

gAY Agdta AREHTER 2 file. In those environments adopting coarse-grained
wuchisu@selab.snu.ackr biect t d d . bet £t

wods: 10009 4% od object management, dependencies between software

AAGE 20008 59 30 objects cannot be represented. When an object is

692 HEHFY A LZEA B F8 A 27 A A 7 Z Q007

identify the
change and the range of change propagation for

changed, it is desirable to easily

efficient software development and maintenance.
However, it is difficult to identify those in coarse-
Traditional

coarse~grained configuration management models

grained object management models.
are adequate for managing software documents
which have comparably a few dependencies bet-
ween components.

In contrast, fine-grained configuration manage-
ment maintains structure information contained in
software documents. The advantages of fine-
grained configuration management are {0 preserve
inter-document dependencies and to control change
propagation at fine-grained level [1]. Moreover it
can avoid the mismatch between logical structure
and physical structure of software objects [2].
Fine-grained configuration management is useful
for software diagram, like class diagram as well as
the application which requires sophisticated depend-
ency management. But the existing fine-grained
object management models are not suitable for
managing software objects when the structure of a
document is frequently changed.

Fine-grained software configurations consist of
component objects, and may have composition and
reference relations between objects. When the same
relation refers all versions of an object, the relation
is said to be generic. On the other hands, if each
version of an object is bound to a specific relation,
to be bound. A bound

configuration is a composite object that has bound

the relation 1is said

relations to its components. When an object was
updated in a bound configuration, a new version of
the object should be created and existing references
should be updated to point the new version. For
example, Figure 1 shows a bound configuration.
When the object d was updated, d, a new version
of d, was created and the change was propagated
through not only composition relations but also
reference relations. Due to this version proliferation
problem, bound configurations are not suitable for
storage management of fine-grained configurations.
fine-grained configuration

Some existing

management models, such as [1] and [3), were
implemented on Oz [4], an OODBMS supporting
generic configurations. However, Oz may have some
inefficiencies with fine-grained configuration where
and deleted
frequently. Another issue of fine-grained configu—

component objects are created
ration management is how to extract delta between
versions of a structured document. In general, it is
necessary to compare every object in two versions,
and the comparison time is proportional to the

average number of objects in a version.

(a) Initial state

reference

(b) After updating the object d

Fig. 1 Version proliferation in a bound configu-
ration
are a number of

As stated there

relationships and dependencies between software

above,

components. To maintain consistency at
fine-grained level, we need to know existence of
dependencies between versions of documents,
occurrence of changes, the contents of the changes,
which documents the changes should be propagated

to, and which parts of the dependent documents

oA g AZEQ AAME AF QA 71

should be changed. In coarse-grained software

development environments, dependencies are
represented in terms of files. In such environments,
when contents of a file were changed, it is difficult
to know which parts of the dependent documents
should be

models, such as [1] and [2], can

changed. Fine-grained configuration
manage
dependencies at fine-grained level, but changes are
propagated regardless of the type. The existing
configuration management tools can distinguish

only between the interface change and the
implementation change. However, it is desirable to
distinguish changes of information, like of comment
which

related to the design of a software system, with

or graphical information, is not directly
changes of the design information. In addition, the
complexity of dependency management cannot be
ignored because fine-grained configurations may
have a great number of dependencies between
objects.

We propose an operation-based version storage
and consistency management model for fine-grained
software configurations. A configuration consists of
documents, modules, and elementary objects. Based
on the encapsulation property of software modules,
we imposed a restriction, that is the destination of
an inter-document dependency should be coarser
than a module, in order to reduce the complexity of
fine-grained dependency management. Operations
applied to edit software objects, such as creation,
deletion, and update, are recorded in an operation
history, which is used to store the result of editing.
Accordingly, it is needless to compare two versions
to extract delta. Operation histories are used as
backward delta between versions as well as
inconsistency information. Inter-document
consistency at fine-grained level is managed by
operation histories and dependencies.

This paper is organized as follows. Section 2
presents an operation model of fine-grained objects
management. Section 3 describes a version storage
and consistency management model based on
operation histories. Section 4 reviews the related

work, and Section 5 gives a conclusion.

.,d
Iz
rN
N2
e
528
o
)
i)
]
i)

693

2. An Operation Model of Object Manage-
ment

Our software configuration model consists of

documents, modules, elementary objects, and

relations between them. All objects should be
created, deleted, and updated by the operations
defined

example of objects and relations between them.

in their interface. Figure 2 shows an

An elementary object is a unit of software
components. For example, statements, while loops,
variables are elementary objects. A module is a
unit of encapsulation. Objects residing outside a
module are independent of the internals of the
module. For example, classes, functions, and global
variables are modules. The destination of an
inter-module dependency must be coarser than a
module. A document is a unit of editing and
and relations. A

consists of modules, objects,

document may have several versions. Relations
between objects are categorized into composition
relations and dependencies, and relations can be
created or deleted through the version history of a
document. Object type definition has an interface
that consists of operations that are used to change
objects of the type. A configuration is a set of
documents related by dependencies. Composition
hierarchies of objects can be constructed from a
and elementary

number of documents, modules,

objects. Not only a document but also a module

Configuration

Document

<> document O elementary object ——parent relation
D module D interface —»dependency

Fig. 2 Software objects and relations

694 ARAGH=EA AZE] & F& A 27 A AT Z(Q0007)

can have elementary objects and modules as its
children. In contrast, a composite elementary object
can have only elementary objects as its children.
Generally, software documents are edited by
people. In our model, every object has an interface
and can be changed only by the operations defined
in the interface. Operations applied by editing are
recorded in a transient operation history, which is
used to store the result of editing. Figure 3 shows
an example of an editing and check-in process.
Transient objects are manipulated by editors and
reside in volatile storage. Operations applied to
transient objects are recorded in a transient
operation history. During the check-in process, the
operations in the transient operation history are
applied to persistent objects. Persistent objects are
stored in non-volatile storage, such as file systems
and databases. Operations applied to persistent
objects are stored in a persistent operation history
and used for version storage and consistency

management.

Transient storage

o ~-.. deleted

creation, deletion, and
update of transient objects

User's editing

transient operation history

c(d, my, vy), cld. my, vy}, eld, my, vy),

. c(my, 00, v,), cmy, 04, v5), clmy, 05, Vg), -
i erloy, m,), erioy, my), crios, m,), ulo;, v,),‘;
L d(m;), droy, my), u(my, vy) /

5 {c(d mp. vy, cld,myvy),
-y[reduced form { c(m,, 0., v,), c(m,, 0y, v5),i
cr(o), m,) ;

creation, deletion, and

update of persistent objects Check-in

persistent operation history

Fig. 3 Operation-based editing and check-in

A transient operation history consists of c(y, x,
v), dx), ulx, v), crlx, y), and dr(x, y), which are
creation of x as a child of ¥y with the value v,
deletion of x, update of x with the value v, creation
of a dependency from x to y, and deletion of a
dependency from x to y, respectively. Transient

operation histories can also be used to support
undo and redo in the editing process. A persistent
operation history consists of c(x), d(x), u(w), cr(y),
and dr(y), which are creation of x, deletion of x,
update with the value v, creation of a dependency
and deletion of a dependency

to y, to v,

respectively. Create operations without attribute
value specifications and inverse update operations
are stored in a persistent operation history. For
example, when the value of the object x is vi and
ulx, v2) is applied, the value of x will be set to vz
and u(vi)) will be recorded. Persistent operation
histories are stored separately in the corresponding
objects to reduce searching time to retrieve
previous versions. So u(v), cr(y), and dr(y) are
stored in the applied object, whereas c(x) and d{x)
are stored in the parent of x.

We defined object visibility to manage hiera—
rchies of objects. When an object was created, it is
visible from its parent object. Later, when the
object is deleted, it will be invisible from the
parent. An object is visible if and only if its parent
is visible and it is also visible from the parent.
Before defining object visibility, existence and
parent relation of objects should be defined.

Definition 1 Existence of an object x, E(x), is
true if and only if x has been created ever.

Definition 2 Let O be a set of objects. Parent
relation P is a binary relation on O, and <x, y> is
an element of P if y is the parent of x. P’ is a
binary relation on O, and it represents y had been
the parent of x.

Definition 3 Ancestor relation P’ is a quasi
order on O. Historic ancestor relation P* is a quasi
order on O, which includes the past ancestor
relations as well as the present relations.

P ={<xy> | <x,y>& PV Jz(<x 2>

e PP ALz y>€ P)}

P ={<x,y>|<qy>€ (PUP)V Iz

<x, 2> € P AL y>€EP))

Definition 4 Let O and M be sets of objects
and modules, respectively. Dependency relation K is
a subset of OXM, and <x, y> is an element of I

if x depends on y.

oA ge) AnEdo] AAE AF A VW A F duA del =Y 695

Definition 5 Visibility of the object x, V{(x), is
true if and if only there exists an object y such
that V(y) is true and <x, y> is a element of P.
Visibility of a dependency <x, y>, V(<x, y>), is
true if and only if V(x) and V{(y) are true and <x,
y> is an element of I2.

Vi) & 3y (Viy) A <x, y> € P)

Vi<x, y>) © [V) A Vy) A <x, y> € R]

Note

regardless of the visibility if the object was created

that existence of an object is true
once. We defined the virtual root r, of which
visibility is always true. Since V{(r) is true, the
actual root of a document can be created as a child
of r.
Each

post-condition. Table 1 shows pre-conditions and

operation has its pre-condition and
post-conditions of operations in terms of visibility
and relations. A transient operation history should
be wvalid in order to be used for object
management. Informally, a valid operation history
has no operations on invisible objects and no
repeated creation of an object. We assumed that

editors always produce valid operation histories.

Table 1 Pre-conditions and post-conditions of operations

pre~condition operation post-condition

VOIA T B0 | oy, x v | TOIN SR YPEP
T A x.walue = v
ViyIA a0 Vipyn<x, y>& P
X

<x, y>E P A<x, y>EP’
Vix) ulx, v) Vix) Axvalue = v
VAV A ey | VEOATIA
<x,y> & R TNV < y>ER
VOO AV A Vix)AV(yIA
<x, y>ER R
Definition 6 Let OP = <o, .. o> be a

transient operation history. OP is valid if the
following conditions hold.
For all o; and ¢; belong to OP,
Wlla=dzy,v ANg=cy,x,v)] =2i<J
Di<wz>e PP Al(a=cdy,x v Aog=d2

YV (o =dx) N og=4dz)
Ng=dz))] =»i<j

B l[(a=cdy,xv) Ng=dx)) V (a=ux v
ANog=dx))V (a=dyxv Aag=ukxv)
1=i<j

@DIl(o=cy,x) ANg=cy,x0)] >[i=j
ANy=y Av=v1]

BGloa=dx) ANg=dx)] =i=j

©l(a=dzx v Vao=cwyv) Ag-=
alx, v) 1 =i<j

Dltoa=ate,y Voa=db,y))AN((g=dz
A<, z2>&FP)V (g=dw A<y w €
PYy)l=i<j

®[(o=alxy) Vo=dly) N (g=dx
Vog=dn)l=>i<j

Oloa=aboy Ng=d,y]l>i<j

QO [(o =calx,) Ao =calx, v) V (o= drix
WAg=dl,n)]=i=j

For all o belong to OP,

Wog=cyvxv=3Jala=dzgyv)Ni<j]

122 [{o=dx) Vog=uxv)]l=3olao=dy x
v AiI<j]

A g =clx,y) = JoaTaxla=dz xv) A o=
dw y, V) Ni<jANk<j]

M og=dix,y = daloa=aluoy Ai<j]

V(o = ulx, v)

A transient operation history can be reduced
before applying it to persistent storage. In other
words, operations on temporarily created and
deleted objects, update operations on newly created
objects, repeated update operations on the same
object, and operations on deleted objects can be
removed.

Definition 7 Operation subsumption rule S is a
quasi order on OP.

S={<o, 0> 1 [<x, 2> € PN g =d2

AN(o=dy, x, v Vo=do Vo= ux v

Vo=akyVa=calyx Vo=dixy

Voo =dly x)1

VIg=dx) A (o=cly x v

Vo=ux v Vo=clyy Vo=alyx

Vo=dilx,y Vo=dlyx)]

V(ig=dy x v) AN o= ulxv))

V(g=uxv)ANao=uxv) ANi<j)

696 AR eRA AZEYS] % S8 A 27 F A7 Q007

V(g =dlgy Na=cly)}

Definition 8 A reduced operation history can be
constructed from a valid operation history by
applying the following operation substitution rule.

Where <oi, 0> € S,

(1) if o
substitute @ for o;, 05 and all p such that <p, 0>
e S

2) if o = ulx, v) and o = cly, x, v), then

cly, x, v) and o = d(x), then

substitute @ for o, and substitute c(y, x, v’) for o;.

(3) if or = crlx, y) and o = dr(x, y), then
substitute @ for o; and o;.

(4) otherwise, substitute @ for o

Figure 3 shows an example of a transient
operation history and the reduced form. The
operations applied by the editor are listed in the
transient operation history. Deletion of a module
enforces automatic deletion of dependent objects in
a document. In contrast, deletion of an object does
child

dependencies. For example, dr(oz, ms) follows d(ma)

not require deletion of objects or
in the transient operation history, whereas there
does not exist d(os) or dr(os, ma) after d(ma). Since
ms was deleted, c(di, ms, v3), c(ms, 03 V6), crios
ma), cr(os, mo), ulos, v7), dims), and dr(oz, ms) were
removed by the substitution rule. In addition, c(d,
my, uv1) and u(mi, vs) were replaced by c(di, mu, vs).

Theorem 1 The resulting object visibility does
not affected by the substitution.

Proof : The proof is in four parts.

(1) Suppose o: = cly, x, v) and o; = d(x). By
Definition 6, operations on x or the descendants of
x can exist only between o; and o;. Since V{(x) is
false after o;, visibility of every descendant of x is
false. Even after the substitution, V(x) and visibility
of the

operations on x or the descendants are removed.

of the descendants are false since all

By Definition 5, V(x) can influence only visibility of
the descendants(including the dependencies) of x.
Therefore visibility does not affected by the
substitution.

(2) Suppose o = ulx, v) and o = cly, x, v). By
Definition 6, i is greater than j. Since o; does not

influence visibility of any objects, it is sufficient to

consider only the value of x. Therefore c(y, x, v")
can be substituted for o, and o; can be removed
without affecting visibility.

(3) Suppose o; = cr(x, ¥) and o; = dr(x, y). By
Definition 6, there does not exist operations on <x,
y> or deletion of the ancestors of <x, y> between
0; and oj. Therefore V(<x, y>) is false before and
after substitution. Since o; and o; do not influence
visibility of any other objects, visibility does not
affected by the substitution.

(4) Suppose o; is an operation on x, and o; is
deletion of x or an ancestor of x, By Definition 6, {
is less than j. Since visibility of x and the
descendants of x is false after o, o can be
removed without affecting visibility. In addition,
where o = ulx, v), of = ulx, v"), and ¢ < j, o can
be removed since any update operations do not
affect visibility. Q.E.D.

3. Operation-Based Fine-Grained Confi-
guration Management

3.1 Version Storage Management

In our operation-based version storage model,
when update operations are applied to a persistent
object, the updated and the

operations will be recorded as backward delta. Even

object will be

when deletion of an object is applied, the object
will not be visible instead of being removed. Since
updated objects are not copied, all relations between
objects can be treated as generic relationships. A
version has its persistent operation history that was
applied to the previous version to produce the
version. To retrieve a previous version of a
document, persistent operation histories of the
document are used. We defined visibility in the i-th
of the

its persistent operation histories.

version in terms latest version of a
document and
Attribute value of an object in the i-th version is
determined by the earliest (inverse) update
operation between the i+1th version and the latest
version.

Definition 9 Let OPx be the transient operation
history applied to derive the i-th version from the

previous version, and let U be the append operator

A 29 e AMG A A4 A WA

of operation histories. So kLZJnOPk is the appended
union of the operation histories bet\;veen the n-th
version and the m-th version. If U OP; satisfies
the conditions of Definition 6, then OPy is said to
be valid.

Definition 10 Let OPy be
operation history of the k-th version stored in the
object y, and let Ly be the set of child objects of y
in the latest version. And let Cy and Dy denote the
sets of created and deleted child objects of y

the persistent

between the i+1th version and the latest version,
respectively. Object visibility in the i~th version
defined as follows, where [is the latest version
number and 1 < [< [

Ly={x|<x,y>€ P}

Cy={xlclx) € ‘ OP;y }

k=T+1

~ 7

Dy ={x1dx) € \) OPy}

Vix) 3y [Viy) A x € ((L, UDy)-Cy)l

Definition 11 Let LRy be the set of destinations
of the dependencies of x. And let CRi and DR
denote the sets of destinations of created and
deleted dependencies of x between the i+1th version
and the Then

dependency visibility in the i-th version is defined

latest version, respectively.
as follows, where 1 < | < [
LR, ={y |l <x, y> € R}

CRy = (y|cry) &) OPw)

a8

DR ={y | drly) € II=L:J+IOP,QV }

Vil<x, y>) @ [Vilx) A Vily) Ay &€ ((LR, U DR,
) - CRix)]

For example, Figure 4 shows three versions of a
document and persistent objects with operation
histories. Version 1 has no operation history
because it will not be used anywhere. In derivation
of version 2, c(os), d(os), clor), clos), cr{cs, mz) and
ulos, v1) were applied. Note that deletion of os
made o5 and <os, m2> invisible, and vo, the value
of 03 in version 1 was recorded in the update
operation. In derivation of version 3, d(mi), dr(os,
m1), d(os), u(os, v2), and were actually applied. The
underlined operations, dr(os, m) and d(os), exists in
those are

the transient operation history but

subsumed by d(os). Deletion of rmu made its

Y #e =4 697

pes

children invisible and enforced deletion of <oz, mi>.
Suppose a user wants to retrieve version 1 after
creation of version 3. Then version 3 and operation
histories are used to obtain version 1. First, visible
children of the root of the document in version 1
should be obtained from the definition of visibility.
Then visible children and dependencies of those can
be obtained successively. The value of o3 is decided
by wulvo).

Revision 1

2 clo,), clogh. |

‘ crlog, my), |
(\1‘("1» vy

------ deleted parent relation

{ s }
i dr(oy, my), ;

| driog, m)). -C:>
{ diog), d{og){
L (03, ¥))

-+ deleted dependency

operation history

Fig. 4 Objects and operation histories in each version

Theorem 2 shows that the definition of visibility
in the i~th version can retrieve the i-th version.
Theorem 2 The definition of visibility in the
i-th version always produces correct results, i.e.
V(x) in the i[-th version is equivalent to Vi{x) in
the latest version.
Proof : Let P; be the parent relation in the i-th
version and d denote a document. To show the
correctness of object visibility, we first prove that
visibility of child objects of d is correct. Note that
Vi(d) and Vi(d) are always true.
(=)
Vi = Vid) A <x,d> € P;
= X D> EPAN(XEDyVxeDg) N x€ Cy
VxeGa)

= x> EP AN (x&DaAx&Ca) V (x&Da
AXxE G)VIxEDaNxeCs)V (x E Dy
ANx & GCa)l

698 ARIYFHEEA ATEY 0] A

> X d>EPVFV(<XdEPAXxEDa A

x&Gq) VF

SxE€ELaVI{XxXEDaANxe&Ca)

2xE€(LgUDg)- Ca

SVl ANx € (La U Dg) - Ga = Vilx)

(<)

Vilx)} > Vild) AN x € (Lo U D) - Ga

2(xELVXxEDy) ANxely

(<> EPAxEC)V(XEDaAxeCa)

2(< > EPNc) ANOFPs) V (dx) € OPy N

dx) € OP:)

where a < [, i1 < b < [and ¢ < I,

= <x,d> € PV <x,d> € P; > Vi)

Now we can prove the correctness of visibility
of any descendant objects inductively. We skipped
the induction. We also skipped the proof of
dependency visibility since it is similar to the of
object visibility. Q.E.D.

3.2 Consistency Management

This section deals with the issues of
inter-document consistency management.
Dependencies between objects and modules can
exist across document boundaries. If an object x
depends on a module m, then a dependency <x,
m> exists. So changes of m may require changes
of x, or not, according to the change type. We
defined depend on and consistent with relations to
represent relationship between versions of
documents. Dependencies can be added or removed
as documents are being changed.

Definition 12 Let a; be the i-th version of the
document @, and Ra, P« , and P, are the
inter-document dependency relation of g, the
ancestor relation of a;, and the historic ancestor
relation of the document b, respectively. Then a:
depends on b, denoted by a: — b, if the following
condition holds.

Definition 13 If a; depends on b, and a; was
created based on the contents of b; or consistency
of ai was checked with respect to b;, then a is
consistent with bj, denoted by a; ~ b;.

Figure 5 shows an example of versions of
documents and dependencies and consistencies
between them. When a new version of a document

38 A 27 A AT 220007

@ R @

m, n, m;
o) (o) (o) 6
a,—b b—c
a,~b, b ~c¢

(a) Initial state

& R

my m, m, m,
0, @
a,—b b,—c
a,~b, b~¢

(b) Updating ¢

ORERGERS
n] [m] (g [iT
ogoYodo

a,—b b,
a,~b b,~c,

(c) Propagating the change to b

o
50 ¢

a,—b b,—c
a,~b, b,~c,

&
h-

(d) Checking consistency of a

Fig. 5 Dependencies between documents

ol @9l 2ZEgo] AAE AF A A HE 2 d84 ¥ =29 699

is created, public attributes and operation histories
of a module are visible to other documents and can
be used to propagate changes. A module has a
attribute that

in other documents of deletion of the

visibility informs the dependent
objects
module. When a module or its ancestor is deleted,
its visibility attribute will be set to false. As
inconsistencies may occur frequently and repeatedly
in the same object, we adopted lazy inconsistency
resolution policy to avoid repefitive inconsistency
resolutions. A change on a module is propagated to
the dependent objects according to the operation
type, only when the dependent documents request
consistency checking.

To check consistency of a, the latest version of
the document @, the depends on relations, such as
a — b, are searched by the depth first manner. If
bm, the latest version of the document b, has no
documents which bn depends on, or b has been
visited once, then bp is consistent. If a1 ~ bm, @ is
consistent with the latest versions of other
documents. If @ is not consistent with bm, then we
whether the should be

propagated to a. If so, am is created and a1 = bm

investigate change
is added. Otherwise, ai ~ bm is added. For example,

Figure 5(a) shows an initial consistent
configuration. In Figure 5(b), ¢z was created and
the change was not propagated yet. Suppose we
want to know consistency of ai, then bt and ¢z are
visited subsequently. Because ¢ is consistent,
consistency of by is checked next, and bz is created
and bz ~ ¢ is added (Figure 5(c)). In Figure 5(d),
a need not to be changed and @@ ~ b2 is added
because b and b are equivalent at the point of the
dependency between o1 and mo.

Thus,

potential

we are able to know occurrence of
inconsistencies from the latest version
number of documents and consistent with relations.
And the contents of the changes are provided by
operation history of the changed modules. The
documents which can be influenced by the changes
are determined by consistent with relations, and we
whether the should be

propagated according to the changed module and

can decide change

the applied operation type. The objects influenced
by the changes are determined by the fine-grained
dependency relations.

4. Related Work

A research on software engineering databases[5]

proposed the concept of a configuration, a
document, and an object, including intra-document,
inter-document, and inter-configuration relation-
ships. A fine-grained configuration management
modell1]

document and

supports version management of both

object levels. Relations are
categorized into depends_on and based_on relations
between documents as well as objects, and
consistent_with relations between documents. These
models do not have the concept of a module and
were implemented on top of Os.

Orm storage model[6] supports version control
for fine-grained hierarchically structured documents,
such as programs that consist of classes and
functions. However, it supports only bound
configurations. HiP[7) provides an efficient storage
for versions of trees, which have only composition
relationships. But HiP cannot manage a graph
structure, which has a number of dependency

relations, and it also supports only bound
configurations.
In POEMI[2],

software unit

a programming environment, a

can be changed only by the

operations defined in its type definition. But
operations are not used for storage and consistency
and POEM

proliferation as it supports bound configurations.

management, cannot avoid version
CPRGI8] is a software architecture for consistency
management at fine-grained level. CPRG model
consists of = components, which are modified by

graph operations, and relationships between

components. When changes occur in a component,
the changes are stored in a change description,
which can be used to support undo/redo and
related

versioning, and propagated to the

components. However, it does not provide a

detailed method to retrieve a consistent version of

a composite object and is not suitable for managing

700 AEAGH A 2ZEY L &8 A 27 W A 7 (2007

fine-grained lightweight objects. And it does not
support object management in transient storage.
CoMal9] is a configuration management model,
which is based on graph rewriting, but it cannot
perform consistency control at fine-grained level
since it follows a coarse-grained approach. A

formal model of consistency of configurations
vector was presented in [10]. But the model of [10]
supports only coarse-grained dependencies, and

documents composing a configuration and
dependencies are fixed.

O2l4] is considered as the best candidate for
fine-grained version existing
OODBMSs

configuration. Oz supports object versioning using

storage among

because it supports generic
the concept of version stamps. But O does not
provide structured deita method, which is provided
by our model. In O, when an object is created or
deleted, the parent object should be duplicated, and
deletion of an object requires updating version
stamps of the descendants. Thus O: may have
some inefficiency for managing a document which

varies its structure frequently.

5. Conclusion

In contrast to other engineering documents,
structure of software documents can be changed
frequently. We proposed an operation-based
fine-grained configuration management model, and
a prototype of the transient and version storage
model was implemented on top of ObjectStore, an
OODBMS. Our model considers transient storage
persistent

management as well as storage

management. To retrieve a version, the latest
version and persistent operation histories are used
to obtain object visibility. Since operation histories
are separately stored to reduce searching time for
delta and the space for storing a version is
proportional to the number of applied operations, it
is suitable for frequent creation of versions.
Inter-document consistency can be managed by

operation histories and fine-grained dependencies.

References

[11 S. Sachweh and W. Schafer, Version Management
for tightly integrated Software Engineering En-
vironments, Proc. 7th Int'l Conf Software
Engineering Environments, Apr. 1995.

[2] Yi-Jing Lin and Steven P. Reiss,
Management with Logical Structures,
Int’l Conf. Software Engineering, 1996.

[31 P. Lindsay, Y. Liu and O. Traynor, A Generic
Model for Fine Grained Configuration Management
Including Version Control and Traceability, Proc
Australian Software Engineering Conf. Sep. 1997.

[4] F. Bancilhon, C. Delobel, and P. Kanellakis,
Building an Object-Oriented Database System,
The Story of Oz Morgan Kaufmann, 1992,

[5] W. Emmerich, W. Sch fer and J. Welsh,
Databases for Software Engineering Environments
- The Goal has not yet been attained, Proc. 4th
European Software Engineering Conf,, 1993.

[6] B. Magnusson and U. Asklund, Fine Grained
Version Control of Configurations in COOP/Orm,
Int'l Workshop on Software Configuration
Management, Mar. 1996.

[7] E. J. Choi and Y. Kwon, An Efficient Method for
Version Control of a Tree Data Structure,
Software— Practice and Experience, vol. 27, no. 7,
pp.797-811, Jul. 1997.

[8]1]. Grundy, J]. Hosking, and W. B. Mugridge,

Configuration
Proc. 18th

Inconsistency Management for Multiple-View
Software Development Environments, IEEE
Trans. Software Engineering, vol. 24, no. 11,

pp.960-981, Nov. 1998,

[9] B. Westfechtel, A Graph-Based System for
Managing Configurations of Engineering Design
Documents , Int’l J. Software Engineering and
Knowledge Engineering, vol. 6, no. 4, 1996.

[10] G. Heidenreich, D. Kips, and M. Minas. A New
Approach to Consistency Control in Software
Engineering, Proc. 18th Int'l Conf Software
Engineering, Mar. 1996.

[111 E. Bertino and L. Martino, Object-Oriented
Database Systems, Addison-Wesley, 1993.

[12] B. P. Munch, Jens-Otto Larsen, B. Gulla, R.
Conradi, and Even-Andre Karlsson, Uniform
Versioning: The Change-Oriented Model, Proc
4th Imt'l Workshop Software Configuration
Management, 1993.

WA g 2ZEo] AANE 9

=3

19913 Mgt A4gA s AL
1993 Aguste AEA S Ak}
SHAF AALE 19993 89 AMedign A
Abbsbal uba) 1999 99 ~ A A
BRA BAATA ATY BAEoR:
LZESo] AL B, LTEHS] I

#e), dlojgiuo)=

% 2 5
RS ATES] 2 S5
A2t AA2E IR

3

b1l

4

}‘\l.

7]

s

B

il

HE

e

e

o

i

3!

701

