Application of In-direct Estimation for Small Area Statistics

소지역 통계 생산을 위한 추정방법

  • Kim, Young-Won (Department of Statistics, Sookmyung Women's University) ;
  • Sung, Na-Young (Department of Statistics, Sookmyung Women's University)
  • 김영원 (숙명여자대학교 통계학과) ;
  • 성나영 (숙명여자대학교 통계학과 대학원)
  • Published : 2000.04.30

Abstract

Small area estimation is becoming important in survey sampling due to a growing demand for reliable small area statistics. In estimating means, totals, and other parameters for small areas of a finite population, samplie sizes for small areas are typically small because the overall sample size is usually determined to provide specific accuracy at a much higher level of aggregation than that of small area. The usual direct estimators that use the only information which is gotten from the sample in a given small area provide unreliable estimates. However, indirect estimators utilize the information from the areas related with a given small area, that is, borrow strength from other related areas, and so give more accurate estimates than direct estimators. In this paper we investigate small area estimation methods such as synthetic, composite and empirical best linear unbiased prediction estimator, and apply them to real domestic data which is from the Survey of Hotels and Restaurants in In-Chon as of 1996 and then evaluate the performance of these methods by measuring average squared errors. This evaluation shows that indirect estimators, which are small area estimation methods, are more efficient than direct estimator.

지방자치제 실시에 따라 우리나라에서도 전국 또는 도 단위의 통계뿐만 아니라 시 군 구 등의 소지역 통계에 대한 수요가 증대되고 있다. 하지만 정부통계 생산을 위해 실시되는 표본조사의 경우 시(특별시, 광역시) 및 도별 통계생산을 목적으로 하기 때문에 신뢰성 있는 소지역 통계를 산출하는 것이 불가능하고, 따라서 이런 소지역 통계생산을 위해 간접 추정 기법을 적극적으로 활용하는 것이 필요하다. 본 논문에서는 정부통계 생산을 위한 소지역 통계 기법의 도입 및 활용 가능성을 검토해 보기 위해 인천광역시 숙박 및 음식점업의 총매출에 대한 구별 소지역 통계를 산출할 수 있는 여러 가지 간접 추정 방법을 제시하고, 아울러 도소매업 총조사 자료를 이용하여 제시된 간접추정량들의 효율성을 비교 분석해 보고자 한다.

Keywords

References

  1. 1995년 기준 도소매업 및 서비스업 통계조사보고서, 통계청 통계청
  2. 1996년 기준 사업체기초통계조사보고서, 통계청 통계청
  3. 1996 도·소매업총조사보고서, 통계청 통계청
  4. Small Area Statistics Small Area Data: Policy Issues and Technical Challenges Brackstone, G. J.;Platek, R.(ed.);Rao, J. N. K.(ed.);Sarndal, C. E.(ed.);Singh, M. P.(ed.)
  5. Small Area Statistics Using Model-Based Estimation to Improve the Estimate of Uneployment on a Regional Level in the Swedish Labor Force Survey Cassel, C. M.;Kristiansson, G.;Raback, G.;Wahlstrom, S.;Platek, R.(ed.);Rao, J. N. K.(ed.);Sarndal, C. E.(ed.);Singh, M. P.(ed.)
  6. Journal of the American Statistical Association v.94 Hierachical Bayes Estimation of Unemployment rates for the U. S. states Datta, G. S.;Lahiri, P.;Maiti, T.;Lu, K. L.
  7. Survey Methodology v.8 Hierachical Bayes Estimation of Unemployment rates for the U. S. states Derw, D.;Singh, M. P.;Choudhry, G. H.
  8. Journal of the American Statistical Association v.68 Transformation for Estimation of Linear Models with Nested-Error Structure Fuller, W. A.;Battese, G. E.
  9. Journal of the American Statistical Association v.91 Estimation of Median Income of Four-person Families : A Bayesian Approach Ghosh, M.;Mangia, N.;Kim, D. H.
  10. Journal of Statistical Planning and Inference v.75 Hierarchical Bayes GLMs for the Analysis of Spatial Data : An Application to disease mapping Ghosh, M.;Natarajan, K.;Waller L. A.;Kim, D.
  11. Statistical Science v.9 Small Area Estimation : An Appraisal Ghosh, M.;Rao, J. N. K.
  12. Proceedings of the Social Statistics Section Use and Evaluation of Synthetic Estimators Gonzalez, M. E.
  13. The Annals of Mathematical Statistics v.21 Estimation of Genetic Parameters Herderson, C. R.
  14. Journal of the American Statistical Association v.85 The Estimation of the Mean Squared Error of Small-Area Estimators Prasad, N. G. N.;Rao, J. N. K.
  15. Biometrics v.35 Estimation for Small Domain Purcell, N. J.;Kish, L.
  16. Survey Methodology v.25 Some Recent Advances in Model-Based Small Area Estimation Rao, J. N. K.
  17. Journal of the American Statistical Association v.84 Small Domain Estimation : A Conditional Analysis Sarndal, C. E.;Hidiroglou, M. A.