Regulation of γ-Aminobutyric Acid Production in Tobacco Plants by Expressing a Mutant Calmodulin Gene

  • Oh, Suk-Heung (Department of Biotechnology, Woosuk University) ;
  • Cha, Youn-Soo (Department of Food Science and Human Nutrition, Chonbuk National University)
  • Received : 2000.05.03
  • Published : 2000.06.30

Abstract

In order to understand the biological role of calmodulin in plants, transgenic plants expressing a mutant calmodulin (VU-4, Iys to ile-115) have been analyzed. We found that tobacco plants expressing VU-4 calmodulin have approximately twofold higher $\gamma$-aminobutyric acid (GABA) levels than the control plants. Cell suspension cultures established from the stem explants of the transgenic tobacco seedlings also have higher levels of GABA than the control cell cultures. Specific activity of glutamate decarboxylase (GAD), which catalyzes the decarboxylation of glutamate to $CO_2$ and GABA, of the transgenic tobacco cell extracts was about twofold higher than the activity of the control cell extracts. Western-blot analysis showed that the GAD is highly expressed in the transgenic tobacco plants. GAD partially purified from tobacco cell extracts showed approximately threefold $Ca^{2+}$/calmodulin-dependent activation. These data suggest that GABA synthesis in the transgenic tobacco plants is elevated, possibly due to higher levels of the calmodulin-dependent GAD enzyme and/or as a result of enhanced activation due to increased levels of the foreign calmodulin.

Keywords