DOI QR코드

DOI QR Code

Modal transformation tools in structural dynamics and wind engineering

  • Solari, Giovanni (DISEG, Department of Structural and Geotechnical Engineering, University of Genova) ;
  • Carassale, Luigi (DISEG, Department of Structural and Geotechnical Engineering, University of Genova)
  • Published : 2000.12.25

Abstract

Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional random process is represented as a linear combination of one-variate and one-dimensional uncorrelated processes. Double modal transformation is the joint application of modal analysis and proper orthogonal decomposition applied to the loading process. By adopting this method the structural response is expressed as a double series expansion in which structural and loading mode contributions are superimposed. The simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal orthogonality property leads to efficient solutions that take into account only a few structural and loading modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Keywords

References

  1. Ahmed, N. and Rao, K.R. (1975), Orthogonal Transforms for Digital Signal Processing. Springer-Verlag, New York.
  2. Alaggio, R. and Rega, G. (2000), "Characterizing bifurcations and classing of motion in the transition to chaos through 3D-tori of a continuous experimental system in solid mechanics", Physica D, 137, 70-93. https://doi.org/10.1016/S0167-2789(99)00169-4
  3. Argyris, J. and Mlejnek, H.P. (1991), Dynamics of Structures. North Holland, Amsterdam, The Netherlands.
  4. Armitt, J. (1968), Eigenvector Analysis of Pressure Fluctuations on the West Burton Instrumented Cooling Tower. Internal Report RD/L/M 114/68, Central Electricity Research Laboratories, UK.
  5. Aubry, N., Holmes, P., Lumley, J.L. and Stone, E. (1988), "The dynamics of coherent structures in the wall region of turbulent boundary layer", J. Fluid Mech., 192, 115-173. https://doi.org/10.1017/S0022112088001818
  6. Baker, C.J. (2000), "Aspects of the use of proper orthogonal decomposition of surface pressure fields", Wind and Structures, 3, 97-115. https://doi.org/10.12989/was.2000.3.2.097
  7. Bakewell, H.P. and Lumley, J.L. (1967), "Viscous sublayer and adjacent wall region in turbulent pipe flow", Phys. Fluids, 10, 1880-1889. https://doi.org/10.1063/1.1762382
  8. Benedettini, F. and Rega, G. (1997) "Nonregular regimes of monodimensional mechanical systems with initial curvature: experiments and time series analysis", Proc., IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics, Ithaca, NY, 139-148.
  9. Benfratello, S., Di Paola, M. and Spanos, P.D. (1998), "Stochastic response of MDOF wind-excited structures by means of Volterra series approach", J. Wind Engng. Ind. Aerod., 74-76, 1135-1145. https://doi.org/10.1016/S0167-6105(98)00104-4
  10. Berkooz, G., Holmes, P. and Lumley, J.L. (1993), "The proper orthogonal decomposition in the analysis of turbulent flows", Annu. Rev. Fluid Mech., 25, 539-575. https://doi.org/10.1146/annurev.fl.25.010193.002543
  11. Best, R.J. and Holmes, J.D. (1983), "Use of eigenvalues in the covariance integration method for determination of wind load effects", J. Wind Engng. Ind. Aerod., 13, 359-370. https://doi.org/10.1016/0167-6105(83)90156-3
  12. Bienkiewicz, B., Ham, H.J. and Sun, Y. (1993), "Proper orthogonal decomposition of roof pressure", J. Wind Engng. Ind. Aerod., 50, 193-202. https://doi.org/10.1016/0167-6105(93)90074-X
  13. Bienkiewicz, B., Tamura, Y., Ham, H.J., Ueda, H. and Hibi, K. (1995), "Proper orthogonal decomposition and reconstruction of multi-channel roof pressure", J. Wind Engng. Ind. Aerod., 54/55, 369-381. https://doi.org/10.1016/0167-6105(94)00066-M
  14. Caddemi, S. and Di Paola, M. (1994), "Second order statistics of the wind-excited response of structures", Proc., 4th Italian Nat. Conf. on Wind Engineering, Rome, 151-165 (in Italian).
  15. Carassale, L., Piccardo, G. and Solari, G. (1998), "Wind response of structures by double modal transformation", Proc. 2nd East-European Conf. on Wind Engineering, Prague, 81-88.
  16. Carassale, L., Piccardo, G. and Solari, G. (1999a), "Double modal transformation and wind engineering applications", J. Engng. Mech., ASCE, accepted.
  17. Carassale, L., Piccardo, G. and Solari, G. (1999b), "Double modal transformation in continuous modeling", Proc., 10th Int. Conf. on Wind Engineering, Copenhagen, 1479-1484.
  18. Carassale, L. and Solari, G. (1999), "The proper orthogonal decomposition in the dynamic analysis of structures", CD Proc., 14th. Nat. Conf. of the Italian Association of Theoretical and Applied Mechanics, AIMETA, Como (in Italian).
  19. Carassale, L. and Solari, G. (2000a), "Proper orthogonal decomposition of multi-variate loading processes", C.D. Proc. 8th ASCE Speciality Conference on Probabilistic Mechanics and Structural Reliability, Notre Dame, Indiana, USA.
  20. Carassale, L. and Solari, G. (2000b), "Wind spectral modes for structural dynamics: a continuous approach", Prob. Engng. Mech., submitted.
  21. Carassale, L., Tubino, F. and Solari, G. (2000), "Seismic response of multi-supported structures by proper orthogonal decomposition", Proc., Int. Conf. on Advances in Structural Dynamics, Hong Kong, in press.
  22. Caughey, T.H. and O'Kelly, M.E.J. (1965), "Classical normal modes in damped linear dynamic systems", J. Appl. Mech., ASME, 32, 583-588. https://doi.org/10.1115/1.3627262
  23. Devijver, P.A. and Kittler, J. (1982), Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs, New Jersey.
  24. Di Paola, M. and Pisano, A.A. (1996), "Multivariate stochastic wave generation", Appl. Ocean Res., 18, 361-365. https://doi.org/10.1016/S0141-1187(97)00003-5
  25. Di Paola, M. (1998), "Digital simulation of wind field velocity", J. Wind Engng. Ind. Aerod., 74-76, 91-109. https://doi.org/10.1016/S0167-6105(98)00008-7
  26. Fenni, B.F. and Kappagantu, R. (1998), "On the physical interpretation of proper orthogonal modes in vibrations", J. Sound Vibr., 211, 607-616. https://doi.org/10.1006/jsvi.1997.1386
  27. Foss, K.A. (1958), "Coordinates which uncouple the equations of motion of damped linear dynamic systems", J. Appl. Mech., ASME, 25, 361-364.
  28. Freiberger, W. and Grenander, U. (1967), "On the formulation of statistical meteorology", Rev. Int. Stat. Inst., 33, 59-86.
  29. Georgiou, I.T. and Schwartz, I.B. (1999), "Dynamics of large scale structural/dynamical systems: a singular perturbation/proper orthogonal decomposition approach", J. Appl. Math., SIAM, 59, 1178-1207.
  30. Ghanem, R. and Brzakala, W. (1996), "Stochastic finite-element analysis of soil layers with random interface", J. Engng. Mech., ASCE, 122, 361-369. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(361)
  31. Ghanem, R. and Spanos, P.D. (1990), "Polynomial chaos in stochastic finite elements", J. Appl. Mech., ASME, 57, 197-202. https://doi.org/10.1115/1.2888303
  32. Ghanem, R. and Spanos, P.D. (1991a), "Spectral stochastic finite-element formulation for reliability analysis", J. Engng. Mech., ASCE, 117, 23512372. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2351)
  33. Ghanem, R. and Spanos, P.D. (1991b), Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York.
  34. Ghanem, R. and Spanos P.D. (1993), "A stochastic Galerkin expansion for nonlinear random vibration analysis", Prob. Engng. Mech., 8, 255-264. https://doi.org/10.1016/0266-8920(93)90019-R
  35. Gullo, I., Di Paola, M. and Spanos, P.D. (1998), "Spectral approximation for wind induced structural vibration studies", Meccanica, 33, 291-298. https://doi.org/10.1023/A:1004303315491
  36. Holmes, J.D. (1990), "Analysis and synthesis of pressure fluctuations on bluff bodies using eigenvectors", J. Wind Engng. Ind. Aerod., 33, 219-230. https://doi.org/10.1016/0167-6105(90)90037-D
  37. Holmes, J.D., Sankaran, R., Kwok, K.C.S. and Syme, M.J. (1997), "Eigenvector modes of fluctuating pressures on low-rise building models", J. Wind Engng. Ind. Aerod., 69-71, 697-707. https://doi.org/10.1016/S0167-6105(97)00198-0
  38. Holmes, P., Lumley, J.L. and Berkooz, G. (1996), Turbulence: coherent structures, dynamical systems and symmetry. Cambridge University Press, Great Britain.
  39. Holmstrom, I. (1963), "On a method for parametric representation of the state of the atmosphere", Tellus, 15, 127-149. https://doi.org/10.1111/j.2153-3490.1963.tb01372.x
  40. Hurty, W.C. and Rubinstain, M.F. (1964), Dynamics of Structures. Prentice-Hall, Englewood Cliffs, New Jersey.
  41. Kac, M. and Siegert, A.J.F. (1947), "An eplicit representation of a stationary Gaussian process", Ann. Math. Stat., 18, 438-442. https://doi.org/10.1214/aoms/1177730391
  42. Kailath, T. (1980), Linear Systems, Prentice-Hall, Englewood Cliffs, New Jersey.
  43. Kanwal, P. (1971), Linear Integral Equations, Academic Press, New York.
  44. Kareem, A. (1999), "Analysis and modeling of wind effects: numerical techniques", Proc., 10th Int. Conf. on Wind Engineering, Copenhagen, 43-54.
  45. Kareem, A. and Cermak, J.E. (1984), "Pressure fluctuations on a square building model in boundary-layer flows", J. Wind Engng. Ind. Aerod., 16, 17-41. https://doi.org/10.1016/0167-6105(84)90047-3
  46. Kareem, A. and Cheng, C.M. (1999), "Pressure and force fluctuations on isolated roughened circular cylinders of finite height in boundary layer flows", J. Fluids Struct., 13, 907-933. https://doi.org/10.1006/jfls.1999.0247
  47. Kareem, A., Cheng, C.M. and Lu, P.C. (1989), "Pressure and force fluctuations on isolated circular cylinders of finite height in boundary layer flows", J. Fluids Struct., 3, 481-508. https://doi.org/10.1016/S0889-9746(89)80027-1
  48. Karhunen, K. (1946), "Zur spektraltheorie stochastischer prozess", Ann. Acad. Sci. Fennicae, 1, 34.
  49. Kikuchi, H., Tamura, Y., Ueda, H. and Hibi, K. (1997), "Dynamic wind pressure acting on a tall building model - Proper orthogonal decomposition", J. Wind Engng. Ind. Aerod., 69-71, 631-646. https://doi.org/10.1016/S0167-6105(97)00193-1
  50. Kosambi, D.D. (1943), "Statistics in function space", J. Indian Math. Soc., 7, 76-88.
  51. Kreuzer, E. and Kust, O. (1996), "Analysis of long torsional strings by proper orthogonal decomposition", Arch. Appl. Mech., 67, 68-80. https://doi.org/10.1007/BF00787141
  52. Lee, B.E. (1975), "The effect of turbulence on the surface pressure field of a square prism", J. Fluid Mech., 69, 263-282. https://doi.org/10.1017/S0022112075001437
  53. Letchford, C.W. and Mehta, K.C. (1993), "The distribution and correlation of fluctuating pressure on the Texas Tech Building", J. Wind Engng. Ind. Aerod., 50, 225-234. https://doi.org/10.1016/0167-6105(93)90077-2
  54. Li, Y. and Kareem, A. (1989), "On stochastic decomposition and its applications in probabilistic dynamics", Proc. 5th Int. Conf. On Structural Safety and Reliability, ICOSSAR, San Francisco, 1311-1318.
  55. Li, Y. and Kareem, A. (1991), "Simulation of multi-variate nonstationary random processes by FFT", J. Engng. Mech., ASCE, 117, 1037-1058. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1037)
  56. Li, Y. and Kareem, A. (1993), "Simulation of multivariate random processes: Hybrid DFT and digital filtering approach", J. Engng. Mech., ASCE, 119, 1078-1098. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:5(1078)
  57. Li, Y. and Kareem, A. (1995), "Stochastic decomposition and application to probabilistic dynamics", J. Engng. Mech., ASCE, 121, 162-174. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:1(162)
  58. Lin, Y.K. (1967), Probabilistic Theory of Structural Dynamics, McGraw Hill, New York.
  59. Loeve, M. (1945), "Fonctions aléatoire de second ordre", Compte Red. Acad. Sci. Paris, 220.
  60. Loeve, M. (1955), Probability Theory. Van Nostrand, New York.
  61. Lorenz, E.N. (1959), Prospects for Statistical whether Forecasting, Final Report, Statistical Forecasting Project, MIT, Cambridge, Massachusetts.
  62. Lumley, J.L. (1967), "The structure of inhomogeneous turbulent flows", Proc., Int. Coll. on the Fine Scale Structure of the Atmosphere and its Influence on Radio Wave Propagation, Doklady Akademia Nauk SSSR, Moscow, 166-176.
  63. Lumley, J.L. (1970), Stochastic Tools in Turbulence. Academic Press, New York.
  64. MacDonald, P.A., Holmes, J.D. and Kwok, K.C.S. (1990), "Wind loads on circular storage bins, silos and tanks. III: Fluctuating and peak pressure distributions", J. Wind Engng. Ind. Aerod., 34, 319-337. https://doi.org/10.1016/0167-6105(90)90160-E
  65. Masri, S.F., Smyth, A.W. and Traina, M.I. (1998), "Probabilistic representation and transmission of nonstationary processes in multi-degree-of-freedom systems", J. Appl. Mech., ASME, 65, 398-409. https://doi.org/10.1115/1.2789068
  66. Meirovitch, L. (1967), Analytical Methods in Vibrations. Macmillan, New York.
  67. Meirovitch, L. (1980), Computational Methods in Structural Dynamics. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands.
  68. Moin, P. and Moser, R.D. (1989), "Characteristic-eddy decomposition of turbulence in a channel", J. Fluid. Mech., 200, 471-509. https://doi.org/10.1017/S0022112089000741
  69. Obled, C. and Creutin, J.D. (1986), "Some developments in the use of empirical orthogonal functions for mapping meteorological fields", J. Clim. Appl. Meteor., 25, 1189-1204. https://doi.org/10.1175/1520-0450(1986)025<1189:SDITUO>2.0.CO;2
  70. Obukhov, A.M. (1960), "The statistically orthogonal expansion of empirical functions", Izv. Geophys. Ser. Atmos. Oceanic Phys., 60, 280-291.
  71. Papoulis, A. (1965), Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York.
  72. Priestley, M.B. (1981), Spectral Analysis and Time Series, Academic Press Limited, London.
  73. Spanos, P.D. and Ghanem, R. (1989), "Stochastic finite element expansion for random media", J. Engng. Mech., ASCE, 115, 1035-1053. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
  74. Tamura, Y., Ueda, H., Kikuchi, H., Hibi, K., Suganuma, S. and Bienkiewicz, B. (1997), "Proper orthogonal decomposition study of approach wind-building pressure correlation", J. Wind Engng. Ind. Aerod., 72, 421-432. https://doi.org/10.1016/S0167-6105(97)00270-5
  75. Tamura, Y., Suganuma, S. Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of random wind pressure field", J. Fluids Struct., 13, 1069-1095. https://doi.org/10.1006/jfls.1999.0242
  76. Tuner, I.Y., Longoria, R.G. and Wood, K.L. (2000), "Signal analysis using Karhunen-Loeve transformation: application to hydrodynamic forces", J. Offshore Mech. Arctic Engrg., ASME, 122, 208-213. https://doi.org/10.1115/1.1286923
  77. Uematsu, Y., Yamada, M., Inoue, A. and Hongo, T. (1997), "Wind loads and wind-induced dynamic behaviour of a simple-layer latticed dome", J. Wind Engng. Ind. Aerod., 66, 227-248. https://doi.org/10.1016/S0167-6105(97)00133-5
  78. Van Trees, H.I. (1968), Detection, Estimation and Modulation Theory. Part 1. John Wiley and Sons, New York.
  79. Veletsos, A.S. and Ventura, C. (1986), "Modal analysis of non-classically damped linear systems", Earthq. Engng. Struct. Dyn., 14, 217-243. https://doi.org/10.1002/eqe.4290140205
  80. Zingales, M. (2000), "Simulazione digitale di accelerazioni sismiche spazialmente correlate ed effetti sulla risposta probabilistica di strutture continue", Ph.D. thesis, University of Palermo, Italy (in Italian).

Cited by

  1. Seismic response of multi-supported structures by proper orthogonal decomposition vol.32, pp.11, 2003, https://doi.org/10.1002/eqe.292
  2. Simulation of stationary Gaussian stochastic wind velocity field vol.9, pp.3, 2006, https://doi.org/10.12989/was.2006.9.3.231
  3. An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum vol.151, 2016, https://doi.org/10.1016/j.jweia.2016.01.005
  4. Spectral proper transformation of wind pressure fluctuations: application to a square cylinder and a bridge deck vol.92, pp.14-15, 2004, https://doi.org/10.1016/j.jweia.2004.08.005
  5. Computer Simulation of Stochastic Wind Velocity Fields for Structural Response Analysis: Comparisons and Applications vol.2010, 2010, https://doi.org/10.1155/2010/749578
  6. Data-Enabled Design and Optimization (DEDOpt): Tall steel building frameworks vol.129, 2013, https://doi.org/10.1016/j.compstruc.2013.04.023
  7. Wind modes for structural dynamics: a continuous approach vol.17, pp.2, 2002, https://doi.org/10.1016/S0266-8920(01)00036-4
  8. Double Modal Transformation and Wind Engineering Applications vol.127, pp.5, 2001, https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(432)
  9. Spanwise pressure coherence on prisms using wavelet transform and spectral proper orthogonal decomposition based tools vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2011.01.008
  10. Gust buffeting of long span bridges: Double Modal Transformation and effective turbulence vol.29, pp.8, 2007, https://doi.org/10.1016/j.engstruct.2006.09.019
  11. Harvesting energy via electromagnetic damper: Application to bridge stay cables vol.26, pp.1, 2015, https://doi.org/10.1177/1045389X13519003
  12. The role of analytical methods for evaluating the wind-induced response of structures vol.90, pp.12-15, 2002, https://doi.org/10.1016/S0167-6105(02)00264-7
  13. Dynamics of suspended cables under turbulence loading: Reduced models of wind field and mechanical system vol.95, pp.3, 2007, https://doi.org/10.1016/j.jweia.2006.05.009
  14. Damage detection and localization for continuous static monitoring of structures using a proper orthogonal decomposition of signals vol.15, pp.6, 2006, https://doi.org/10.1088/0964-1726/15/6/036
  15. Prediction of wind loads on high-rise building using a BP neural network combined with POD vol.170, 2017, https://doi.org/10.1016/j.jweia.2017.07.021
  16. Performance Comparison between Passive Negative-Stiffness Dampers and Active Control in Cable Vibration Mitigation vol.22, pp.9, 2017, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001088
  17. Proper orthogonal decomposition in wind engineering - Part 2: Theoretical aspects and some applications vol.10, pp.2, 2007, https://doi.org/10.12989/was.2007.10.2.177
  18. Spline-Interpolation-Based FFT Approach to Fast Simulation of Multivariate Stochastic Processes vol.2011, 2011, https://doi.org/10.1155/2011/842183
  19. A turbulence model based on principal components vol.17, pp.4, 2002, https://doi.org/10.1016/S0266-8920(02)00016-4
  20. Proper orthogonal decomposition in wind engineering - Part 1: A state-of-the-art and some prospects vol.10, pp.2, 2007, https://doi.org/10.12989/was.2007.10.2.153
  21. Monte Carlo simulation of wind velocity fields on complex structures vol.94, pp.5, 2006, https://doi.org/10.1016/j.jweia.2006.01.004
  22. Coherency matrix-based proper orthogonal decomposition with application to wind field simulation vol.5, pp.2, 2006, https://doi.org/10.1007/s11803-006-0591-4
  23. Covariance proper transformation-based pseudo excitation algorithm and simplified SRSS method for the response of high-rise building subject to wind-induced multi-excitation vol.100, 2015, https://doi.org/10.1016/j.engstruct.2015.05.040
  24. Normalized proper orthogonal decomposition (NPOD) for building pressure data compression vol.94, pp.6, 2006, https://doi.org/10.1016/j.jweia.2006.01.008
  25. Una metodología de cálculo para la determinación de la respuesta dinámica longitudinal de estructuras altas bajo la acción del viento vol.31, pp.4, 2015, https://doi.org/10.1016/j.rimni.2014.08.001
  26. On the wind loading mechanism of long-span bridge deck box sections vol.91, pp.12-15, 2003, https://doi.org/10.1016/j.jweia.2003.09.011
  27. Analysis of the wind loading of square cylinders using covariance proper transformation vol.7, pp.2, 2004, https://doi.org/10.12989/was.2004.7.2.071
  28. Simulation of non-stationary wind velocity field on bridges based on Taylor series vol.169, 2017, https://doi.org/10.1016/j.jweia.2017.07.005
  29. POD-based filters for the representation of random loads on structures vol.20, pp.3, 2005, https://doi.org/10.1016/j.probengmech.2005.05.008
  30. An efficient ergodic simulation of multivariate stochastic processes with spectral representation vol.26, pp.2, 2011, https://doi.org/10.1016/j.probengmech.2010.09.006
  31. An efficient Cholesky decomposition and applications for the simulation of large-scale random wind velocity fields pp.2048-4011, 2018, https://doi.org/10.1177/1369433218810642
  32. POD-based representation of the alongwind Equivalent Static Force for long-span bridges vol.12, pp.3, 2000, https://doi.org/10.12989/was.2009.12.3.239
  33. Reduced-Hermite bifold-interpolation assisted schemes for the simulation of random wind field vol.53, pp.None, 2000, https://doi.org/10.1016/j.probengmech.2018.08.002
  34. Dimension-reduction simulation of stochastic wind velocity fields by two continuous approaches vol.29, pp.6, 2019, https://doi.org/10.12989/was.2019.29.6.389
  35. 트윈 빌딩의 공력 특성이 풍응답에 미치는 영향 평가 vol.33, pp.1, 2000, https://doi.org/10.7734/coseik.2020.33.1.1