References
- Akoz, A.Y. (1985), "A new functional for bars and its applications", IV National Applied Mechanics Meeting (in Turkish).
- Akoz, A.Y., Omurtag, M.H. and Dogruoglu, A.N. (1991), "The mixed finite element formulation for three dimensional bars", Int. J. Solids Structures, 28, 225-234. https://doi.org/10.1016/0020-7683(91)90207-V
- Akoz, A.Y. and Uzcan (Eratli), N. (1992), "The new functional for Reissner plates and its application", Computers & Structures, 44,1139-1144. https://doi.org/10.1016/0045-7949(92)90334-V
- Akoz, A.Y. and Kadioglu, F. (1996), "The mixed finite element solution of circular beam on elastic foundation", Computers & Structures, 60, 643-651. https://doi.org/10.1016/0045-7949(95)00418-1
- Akoz, A.Y. and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells" (Accepted for publication in Int. J. Numer. Methods Eng.).
- Al-Hosani, K., Fadhil, S. and El-Zafrany, A. (1999), "Fundamental solution and boundary element analysis of thick plates on Winkler foundation", Computers & Structures, 70, 325-336. https://doi.org/10.1016/S0045-7949(98)00171-0
- Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ.
- Batoz, J.L and Lardeur, A (1989), "Discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates", Int. J. Numer. Methods Eng., 28, 533-560. https://doi.org/10.1002/nme.1620280305
- Batoz, J.L and Katili, I. (1992), "On a simple triangular Reissner-Mindlin plate element based on incompatible modes and discrete constraints", Int. J. Numer. Methods Eng., 35,1603-1632. https://doi.org/10.1002/nme.1620350805
- Belytschko, T., Tsay, C.S. and Liu, W.K. (1981), "A Stabilization matrix for the bilinear Mindlin plate element", Computer Methods in Applied Mechanics and Engineering, 29, 313-327. https://doi.org/10.1016/0045-7825(81)90048-7
- Cheung, M.S. and Chan, M.Y.T. (1981), "Static and dynamic analysis of thin and thick sectorial plates by the finite strip method", Computers & Structures, 14, 79-88. https://doi.org/10.1016/0045-7949(81)90086-9
- Dym, C.L and Shames, I.H. (1973), Solid Mechanics A Variational Approach, McGraw-Hill
- EI-Zafrany, A., Fadhil, S. and AI-Hosani, K. (1995), "A new fundamental solution for boundary element analysis of thin plates on Winkler foundation", Int. J. Numer. Methods Eng., 38, 887-903. https://doi.org/10.1002/nme.1620380602
- Eratli, N. and Akoz, A.Y. (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Computers & Structures, 65, 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8
- Eratli, N. and Akoz, A.Y., "Mixed finite element formulation for folded plates" (Submitted for publication in Computers & Structures),
- Gallagher, R.H. (1975), Finite Element Analysis: Fundamentals, Prentice-Hall.
- Goldenveizer, A.L. (1961), Theory of Elastic Thin Shells, Pergomon Press, New York.
- Huebner, K.H. (1975), The Finite Element Method for Engineers, John Wiley & Sons.
- Hughes, T.J.R, Taylor, R.L. and Kanok-Nukulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Numer. Methods Eng., 11, 1529-1543. https://doi.org/10.1002/nme.1620111005
- Katili, I. (1993a), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: An extended DKT element for thick-plate bending analysis", Int. J. Numer. Methods Eng., 36,1859-1883. https://doi.org/10.1002/nme.1620361106
- Katili, I. (1993b), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part II: An extended DKQ element for thick-plate bending analysis", Int. J. Numer. Methods Eng., 36, 1885-1908. https://doi.org/10.1002/nme.1620361107
- Kavanagh, K.T. and Kay, S.W. (1972), "A note on selective and reduced integration techniques in the finite element method", Int. J. Numer. Methods Eng., 4, 148-150. https://doi.org/10.1002/nme.1620040118
- Mindlin, R.D. (1951), "The Influence of rotatory inertia and shear on the flexural motions of elastic plates", J. Appl. Mech., ASME, 18,31-38.
- Morris, A.J. (1973), "Deficiency in current finite elements for thin shell applications", Int. J. Solids Structures, 9, 331-346. https://doi.org/10.1016/0020-7683(73)90084-X
- Oden, J.D. and Reddy, J.N. (1976), Variational Method in Theoretical Mechanics, Springer.
- Omurtag, M.H. and Akoz, A.Y. (1994), "Hyperbolic paraboloid shell analysis via mixed finite element formulation", Int. J. Numer. Methods. Eng., 37, 3037-3056. https://doi.org/10.1002/nme.1620371803
- Pane, V. (1975), Theories of Elastic Plates, Noordhoff International Publishing.
- Papadopoulos, P. and Taylor, R.L. (1990), "A triangular element based on Reissner-Mindlin Plate theory", Int. J. Numer. Methods Eng., 30, 1029-1049. https://doi.org/10.1002/nme.1620300506
- Pugh, E.D.L., Hinton, E. and Zienkiewicz, A (1978), "Study of quadrilateral plate bending elements with reduced integration", Int. J. Numer. Methods Eng., 12, 1059-1079. https://doi.org/10.1002/nme.1620120702
- Rashed, Y.F., Aliabadi, M.H. and Brebbia, C.A. (1998), "The boundary element method for thick plates on a Winkler foundation", Int. J. Numer. Methods Eng., 41, 1435-1462. https://doi.org/10.1002/(SICI)1097-0207(19980430)41:8<1435::AID-NME345>3.0.CO;2-O
- Reissner, E. (1946), "The effects of transverse shear deformation bending of elastic plates", J. Appl. Mech., ASME, 12, 69-77.
- Reissner, E. (1975), "On thansverse bending of plates, including the effect of transverse shear deformation", Int. J. Solids Structures, 11, 569-573. https://doi.org/10.1016/0020-7683(75)90030-X
- Reddy, J.N. (1984), Energy and Variational Methods in Applied Mechanics, John Wiley & Sons.
- Reddy, J.N. (1993), Finite Element Method, McGraw-Hill
- Reddy, J.N. and Wang, C.M. (1997), "Relationnships between classical and shear deformation theoris of axisymmentric circular plates", AIAA Journal, 35(12), 1862-1868. https://doi.org/10.2514/2.62
- Timoshenko, S. and Woinowisky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill.
- Wang, C.M. and Lee, K.H. (1996), "Deflection and stree-resultants of axisymmetric Mindlim plates in terms of corresponding Kirchhoff soultion", Int. J. Mech. Sci., 38(11),1179-1185. https://doi.org/10.1016/0020-7403(96)00019-7
- Washizu, K. (1975), Variational Methods in Elasticity and Plasticity, Pergamon Press.
- Zienkiewicz, O.C., Taylor, R.L. and Too, J. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Methods Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
- Zienkiewicz, O.C. (1977), The Finite Element Method, McGraw-Hill, London.
- Zienkiewicz, O.C., Bauer, J., Morgan, K. and Onate, E. (1977), "A simple and efficient element for axisymmetric shells", Int. J. Numer. Methods Eng. 11, 1545-1558. https://doi.org/10.1002/nme.1620111006
Cited by
- Mixed finite element formulation for folded plates vol.13, pp.2, 2002, https://doi.org/10.12989/sem.2002.13.2.155
- Exact Bending Solutions of Axisymmetric Reissner Plates in Terms of Classical Thin Plate Solutions vol.7, pp.2, 2004, https://doi.org/10.1260/1369433041211075
- Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum vol.19, pp.5, 2002, https://doi.org/10.1108/02644400210435843
- Free vibration analysis of Reissner plates by mixed finite element vol.13, pp.3, 2002, https://doi.org/10.12989/sem.2002.13.3.277
- Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method vol.130, 2017, https://doi.org/10.1016/j.ijmecsci.2017.06.013
- A BEM formulation based on Reissner’s theory to perform simple bending analysis of plates reinforced by rectangular beams vol.42, pp.5, 2008, https://doi.org/10.1007/s00466-008-0266-2
- Variational approximate for high order bending analysis of laminated composite plates vol.73, pp.1, 2000, https://doi.org/10.12989/sem.2020.73.1.097