References
- Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved elements", Int. J. Numer. Methods Eng., 2, 491-451.
- Choi , C.K. and Schnobrich, W.C. (1975), "Use of nonconforming modes in finite clement analysis of shells" , J. Eng. Mech. Div., ASCE, 101,447-464.
- Choi, C.K. and Yoo, S.W. (1991a), "Combined use of multiple improvement techniques in degenerated shell element", Computers and Structures, 39, 557-569. https://doi.org/10.1016/0045-7949(91)90064-S
- Choi, C.K. and Yoo, S.W. (1991b), "Geometrically nonlinear behavior of an improved degenerated shell clement", Computers and Structures, 40, 785-794. https://doi.org/10.1016/0045-7949(91)90245-H
- Choi, C.K. et al. (1998), "Two-dimensional nonconfonning finite elements: A state-of-the-art" , Structural Engineering and Mechanics, 6(1), 41-61. https://doi.org/10.12989/sem.1998.6.1.041
- Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell clement for general nonlinear analysis", Engineering Computation, 1, 77-88. https://doi.org/10.1108/eb023562
-
Ganapathi, M. and Touratier, M. (1996), "A
$C^0$ eight-node menbrane-shear-bending element for geometrically non-linear (static and dynamic) analysis of laminates", Int. J. Numer. Methods Eng., 39, 3453-3474. https://doi.org/10.1002/(SICI)1097-0207(19961030)39:20<3453::AID-NME9>3.0.CO;2-7 - Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Numer. Methods Eng., 22, 73-92. https://doi.org/10.1002/nme.1620220107
- Hughes, T.J.R, Cohen, M. and Haron, M. (1978), "Reduced and selective integration techniques in the finite element analysis of plates", Nuclear Eng. Desgn., 46, 203-22. https://doi.org/10.1016/0029-5493(78)90184-X
- Kim, J.H. and Lee, S.W. (1992), "A finite element formulation with stabilization matrix for geometrically non-linear shells", Int. J. Numer. Methods Eng., 33, 1703-1720. https://doi.org/10.1002/nme.1620330810
- Kosmatka, J.B. (1994), "An accurate shear-deformable six-node triangular plate element for laminated composite structures", Int. J. Numer. Methods Eng., 37, 431-455. https://doi.org/10.1002/nme.1620370305
- Kumar, W.P.P. and Palaninathan, R. (1997), "Finite element analysis of laminated shells with exact through-thickness integration", Computers and Structures, 63, 173-184. https://doi.org/10.1016/S0045-7949(96)00297-0
- Madenei, E. and Barut, A. (1994), "A free-formulation-based flat shell element for non-linear analysis of thin composite structures", Int. J. Numer. Methods Eng., 37, 3825-3842. https://doi.org/10.1002/nme.1620372206
- Panda, S. and Natarajan, R. (1981), "Analysis of laminated composite shell structures by finite element method", Computers and Structures, 14, 225-230. https://doi.org/10.1016/0045-7949(81)90008-0
- Parisch, H. (1979), "A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration", Compo Meth. App. Mech. Eng., 20, 323-350. https://doi.org/10.1016/0045-7825(79)90007-0
- Ramm, E. and Matzenmiller, A. (1986), "Large deformation shell analyses hased on the degenerated concept", Finite Element Methods for Plate and Shell Structures (Edited by T.J.R. Hughes and E. Hinton), Pineridge Press.
- Reddy, J.N. (1986), "On mixed finite element formulations of a higher-order theory of composite laminates", Finite Element Methods for Plate and Shell Structures, (Edited hy T.J.R. Hughes and E. Hinton), Pineridge Press.
- Reddy, J.N. and Chandrashekhara, K. (1983), "Nonlinear analysis of laminated shells including transverse shell strains", AlAA J., 23, 440-44l.
- Saigal, S., Kapania, R.K. and Yang, T.Y. (1986), "Geometrically nonlinear finite element analysis of imperfect laminated shells", J. Composite Materials, 20, 197-214. https://doi.org/10.1177/002199838602000206
- Spilker, R.L. (1982), "Hybrid-stress eight-node elements for thin and thick multilayer laminated plates", Int. J. Numer. Methods Eng., 18,801-826. https://doi.org/10.1002/nme.1620180602
- Surana, K.S. (1983), "Geometrically nonlinear formulation for the curved shell elements", Int. J. Numer. Methods Eng., 19, 581-615. https://doi.org/10.1002/nme.1620190409
- Wang, B. (1995), "Finite element analysis of geometrically nonlinear laminated composite shell structures", PhD dissertation, University of Western Ontario, Ontario, Canada.
- Yeom, C.H. and Lee, S.W. (1989), "An assumed strain finite clement model for large deflection composite shells", Int. J. Numer. Methods Eng., 28, 1749-1768. https://doi.org/10.1002/nme.1620280804
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration techniques in general analysis of plates and shells", Int. J. Numer. Methods Eng, 3, 275-290. https://doi.org/10.1002/nme.1620030211
Cited by
- Materially and geometrically nonlinear analysis of laminated anisotropic plates by p-version of FEM vol.81, pp.16, 2003, https://doi.org/10.1016/S0045-7949(03)00151-2
- Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings vol.11, pp.12, 2010, https://doi.org/10.5762/KAIS.2010.11.12.5199
- Nine-Node Resultant-Stress Shell Element for Free Vibration and Large Deflection of Composite Laminates vol.19, pp.2, 2006, https://doi.org/10.1061/(ASCE)0893-1321(2006)19:2(103)
- A geometrically nonlinear finite element formulation for shells using a particular linearization method vol.44, pp.3, 2008, https://doi.org/10.1016/j.finel.2007.11.001
- A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells vol.15, pp.2, 2003, https://doi.org/10.12989/sem.2003.15.2.199
- Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation vol.11, pp.7, 2010, https://doi.org/10.5762/KAIS.2010.11.7.2661
- Nonlinear thermoelastic response of laminated composite conical panels vol.34, pp.1, 2010, https://doi.org/10.12989/sem.2010.34.1.097
- A FSDT meshfree method for free vibration analysis of arbitrary laminated composite shells and spatial structures vol.279, pp.None, 2000, https://doi.org/10.1016/j.compstruct.2021.114763