Acknowledgement
Supported by : Portuguese National Foundation
References
- Chen, J.-Y., Liu, J.-K. and Zhao, L.-C. (1995), "An improved perturbation method for free vibration analysis", J Sound & Vibration, 180, 519-523. https://doi.org/10.1006/jsvi.1995.0094
- Chen, P.-T. and Ginsberg, J. H. (1992), "On the relationship between veering of eigenvalue loci and parameter sensitivity of engenfunctions", J. Vibration & Acoustics, 114, 141-148. https://doi.org/10.1115/1.2930242
- Chen, S.H, Liu, Z.S., Shao, C.S. and Zhao, Y.Q. (1993), "Perturbation analysis of vibration modes with close frequencies", Communications in Numerical Methods in Engineering, 9, 427-438. https://doi.org/10.1002/cnm.1640090508
- Courant, R. and Hilbert, D. (1945), Methods of Mathematics Physics, 1, Interscience Publishers Inc, New York.
- Dailey, R.L. (1989), "Eigenvector derivatives with repeated eigenvalues", AlAA Journal, 27, 486-491. https://doi.org/10.2514/3.10137
- Hou, G.J.W. and Kenny, S.P. (1992), "Eigenvalue and eigenvector approximate analysis for repeated eigenvalue problem", AIAA Journal, 30, 2317-2324. https://doi.org/10.2514/3.11220
- Hu, H.C. (1987), Natural Vibration Theory of Multi-Degree-of Freedom Structures, China Science Press, Beijing.
- Lee, I.-W., lung, G.-H. and Lee, J.-W. (1996), "Numerical method for sensitivity analysis of eigensystems with non-repeated and repeated eigenvalues", J Sound & Vibration, 195, 17-32. https://doi.org/10.1006/jsvi.1996.9989
- Liu, X.L. (1995), "Reducing eigenvalue analysis by perturbation method for structures with large stiffness", Proceedings of the fifth EPMESC conference, Macao, August., Ed. Arantes e Oliveira and Joao Bento, Techno-Press, Korea.
- Liu, X.-L. (1999), "Sub-degrees of freedom method with perturbation procedure for reduction of eigenvalue computation", Structural Engineering and Mechanics, 8(6), 579-589. https://doi.org/10.12989/sem.1999.8.6.579
- Mills-Curran, W.C. (1988), "Calculation of eigenvector derivatives for structures with repeated eigenvalues", AIAA Journal, 26, 867-87l. https://doi.org/10.2514/3.9980
- Nayfeh, A.H. (1973), Perturbation Methods. John Wiley and Sons, New York.
Cited by
- Accurate modal perturbation in non-self-adjoint eigenvalue problem vol.17, pp.10, 2001, https://doi.org/10.1002/cnm.443
- Iterative modal perturbation and reanalysis of eigenvalue problem vol.19, pp.4, 2003, https://doi.org/10.1002/cnm.587
- Numerical Presentation of Eigenvalue Curve Veering and Mode Localization in Coupled Pendulums vol.39, pp.9, 2001, https://doi.org/10.2514/2.1518