References
- Hildebrand, F.B., Reissner, E. and Thomas, G.B. (1949), "Note on the foundations of the theory of small displacements of orthotropic shells," NACA TN-1833.
- Kant, T. (1982), "Numerical analysis of thick plates", Computer Methods in Applied Mechanics and Engineering, 31, 1-18. https://doi.org/10.1016/0045-7825(82)90043-3
-
Kant, T. and Manjunatha, B.S. (1988), "An unsymmetric FRC laminate
$C^0$ finite element model with 12 degrees of freedom per node", Engineering Computation, 5(3), 300-308. https://doi.org/10.1108/eb023749 - Kant, T and Patil, H.S. (1991), "Buckling loads of sandwich columns with a higher order theory", Journal of Reinforced Plastics and Composites, 10, 102-129. https://doi.org/10.1177/073168449101000107
- Kant, T and Manjunatha, B. S. (1994), "On accurate estimation of transeverse stresses in multilayer laminates", Computers and Structures, 50(3), 351-365. https://doi.org/10.1016/0045-7949(94)90005-1
-
Kant, T., Owen, D.R.J. and Zienkiewicz, O.C. (1982), "A refined higher order
$C^0$ plate bending element", Computers and Structures, 15, 177-183. https://doi.org/10.1016/0045-7949(82)90065-7 - Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mechanics Research Communications, 7, 343. https://doi.org/10.1016/0093-6413(80)90049-X
- Librescu, L. (1975), Elastostatics and Kinematics of Anisotropic and Heterogeneous Shell-Type Structures, Noordhoff, The Netherlands.
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977a), "A higher order theory of plate deformation. Part 1: Homogeneous plates", ASME Journal of Applied Mechanics, 44(4), 663-668. https://doi.org/10.1115/1.3424154
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977b), "A higher order theory of plate deformation. Part 2: Laminated plates", ASME Journal of Applied Mechanics, 44(4), 669-676. https://doi.org/10.1115/1.3424155
- Manjunatha, B.S. and Kant, T. (1992), "A comparison of 9 and 16 node quadrilateral elements based on higher order laminate theories for estimation of transeverse stresses", Journal of Reinforced Plastics and Composites, 11(9), 968-1002. https://doi.org/10.1177/073168449201100902
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", ASME Journal of Applied Mechanics, 18, 31-38.
- Murthy, M.V.V. (1981), "An improved transverse shear deformation theory for laminated anisotropic plates", NASA Technical Paper, No. 1903.
- Nelson, R.B. and Lorch, D.R. (1974), "A refined theory for laminated orthotropic plates", ASME Journal of Applied Mechanics, 41, 177-183. https://doi.org/10.1115/1.3423219
- Noor, A.K. and Burton, W.S. (1989) "Assesment of shear deformation theories for multilayered composite plates", Applied Mechanics Reviews, 42, 1-13. https://doi.org/10.1115/1.3152418
- Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Science and Technulugy, 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
- Pandya, B.N. and Kant, T. (1987), "A consistent refined theory for flexure of a symmetric laminate", Mechanics Research Communications, 14, 107-113. https://doi.org/10.1016/0093-6413(87)90026-7
- Pandya, B.N. and Kant, T. (1988a), "Higher order shear deformable theories for flexure of sandwich plates finite element evaluations", International Journal of Solids and Structures, 24(12), 1267-1286. https://doi.org/10.1016/0020-7683(88)90090-X
-
Pandya, B.N. and Kant, T. (1988b), "Flexure analysis of laminated composites using refined higher order
$C^0$ plate bending elements", Cumputer Methods in Applied Mechanics and Engineering, 66, 173-198. https://doi.org/10.1016/0045-7825(88)90075-8 -
Pandya, B.N. and Kant, T. (1988c), "A refined higher order generally orthotropic
$C^0$ plate bending element", Computers and Structures, 28, 119-133. https://doi.org/10.1016/0045-7949(88)90031-4 - Pandya, B.N. and Kant, T. (1988d), "Finite element stress analysis of laminated composite plates using higher order displacement model", Composite Science and Technology, 32, 137-155. https://doi.org/10.1016/0266-3538(88)90003-6
- Qatu, M.S. and Leissa, A.W. (1993), "Buckling or transverse deflection of unsymmetrically laminated plates subjected to in-plane loads", AIAA Journal, 31(1), 189-194. https://doi.org/10.2514/3.11336
- Reddy, J.N. (1984a), "A simple higher order theory for laminated composite plates", ASME Journal of Applied Mechanics, 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1984b), Energy and Variational Methods in Applied Mechanics, John Wiley and Sons, New York, USA.
- Reddy, J.N. (1996), Mechanics of Laminated Composite Plates, Theory and Analysis, CRC Press, Inc., Boca Raton, Florida, USA.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME Journal of Applied Mechanics, 12(2), 69-77.
- Reissner, E. and Stavsky, Y. (1961), "Bending and stretching of certain types of heterogeneous aerotropic elastic plates", ASME Journal of Applied Mechanics, 28, 402. https://doi.org/10.1115/1.3641719
- Senthilnathan, N.R., Lim, K.H., Lee, K.H. and Chow, S.T. (1987), "Buckling of shear deformable plates", AIAA Journal, 25(9), 1268-1271. https://doi.org/10.2514/3.48742
- Szilard, R. (1974), Theory and Analysis of Plates (Classical and Numerical Methods), Prentice-Hall Inc, Engle Wood Cliffs, New Jersy.
- Timoshenko, S. P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw -Hill, New York.
- Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", ASMEJournal of Applied Mechanics, 37, 1031-1036. https://doi.org/10.1115/1.3408654
Cited by
- Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates 2017, https://doi.org/10.1002/zamm.201600209
- A solid-shell layerwise finite element for non-linear geometric and material analysis vol.92, pp.6, 2010, https://doi.org/10.1016/j.compstruct.2009.10.032
- Dynamic response of composite sandwich plates subjected to initial stresses vol.37, pp.8, 2006, https://doi.org/10.1016/j.compositesa.2005.05.034
- A novel two-dimensional finite element to study the instability phenomena of sandwich plates vol.283, 2015, https://doi.org/10.1016/j.cma.2014.08.006
- Assumed Strain Finite Elements for Buckling and Vibration Analysis of Initially Stressed Damped Composite Sandwich Plates vol.7, pp.4, 2005, https://doi.org/10.1177/1099636205050084
- Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of antisymmetric angle-ply plates vol.82, pp.2, 2008, https://doi.org/10.1016/j.compstruct.2007.01.001
- Thermomechanical buckling of laminated composite and sandwich plates using global–local higher order theory vol.49, pp.6, 2007, https://doi.org/10.1016/j.ijmecsci.2006.10.006
- Postbuckling and postbuckled vibration analysis of sandwich plates under non-uniform mechanical edge loadings vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.06.025
- Effects of higher-order global–local shear deformations on bending, vibration and buckling of multilayered plates vol.82, pp.2, 2008, https://doi.org/10.1016/j.compstruct.2007.01.017
- A higher order finite element theory for buckling and vibration analysis of initially stressed composite sandwich plates vol.286, pp.4-5, 2005, https://doi.org/10.1016/j.jsv.2004.10.055
- Assessment of inverse trigonometric zigzag theory for stability analysis of laminated composite and sandwich plates vol.101-102, 2015, https://doi.org/10.1016/j.ijmecsci.2015.07.023
- A generalized high-order global–local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads vol.92, pp.1, 2010, https://doi.org/10.1016/j.compstruct.2009.07.007
- Buckling and postbuckling response of sandwich panels under non-uniform mechanical edge loadings vol.60, 2014, https://doi.org/10.1016/j.compositesb.2013.12.072
- Buckling of soft-core sandwich plates with angle-ply face sheets by means of a C0 finite element formulation vol.84, pp.8, 2014, https://doi.org/10.1007/s00419-014-0876-4
- Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates vol.64, pp.3-4, 2004, https://doi.org/10.1016/j.compstruct.2003.09.042
- Higher Order Refined Computational Models for the Free Vibration Analysis of Antisymmetric Angle Ply Plates vol.27, pp.5, 2008, https://doi.org/10.1177/0731684407084125
- On the accuracy of recent global–local theories for bending and vibration of laminated plates vol.95, 2013, https://doi.org/10.1016/j.compstruct.2012.06.018
- Thermomechanical Buckling of Laminated Composite Plates Using Mixed, Higher-Order Analytical Formulation vol.69, pp.6, 2002, https://doi.org/10.1115/1.1490372
- Bending of sandwich plates with anti-symmetric angle-ply face sheets – Analytical evaluation of higher order refined computational models vol.75, pp.1-4, 2006, https://doi.org/10.1016/j.compstruct.2006.04.007
- On the elastic stability of simply supported anisotropic sandwich panels vol.80, pp.4, 2007, https://doi.org/10.1016/j.compstruct.2006.07.008
- Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory vol.55, 2013, https://doi.org/10.1016/j.compositesb.2013.06.044
- A New, Efficient 8-Node Serendipity Element with Explicit and Assumed Strains Formulations vol.6, pp.4, 2005, https://doi.org/10.1080/155022891009486
- Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory vol.46, pp.11, 2008, https://doi.org/10.1016/j.tws.2008.03.002
- Buckling of Sandwich Plates with Random Material Properties Using Improved Plate Model vol.47, pp.2, 2009, https://doi.org/10.2514/1.39180
- Parametric vibration response of foam-filled sandwich plates under periodic loads vol.48, pp.5, 2012, https://doi.org/10.1007/s11029-012-9297-z
- Buckling Analysis of Angle-ply Composite and Sandwich Plates by Combination of Geometric Stiffness Matrix vol.39, pp.6, 2007, https://doi.org/10.1007/s00466-006-0073-6
- Static and dynamic analysis of soft core sandwich panels with through-thickness deformation vol.92, pp.2, 2010, https://doi.org/10.1016/j.compstruct.2009.07.015
- Buckling analysis of a laminated composite plate with delaminations using the enhanced assumed strain solid shell element vol.26, pp.10, 2012, https://doi.org/10.1007/s12206-012-0829-1
- Biaxial wrinkling analysis of composite-faced sandwich plates with soft core using improved high-order theory vol.43, 2014, https://doi.org/10.1016/j.euromechsol.2013.08.002
- Higher order refined computational models for the stability analysis of FGM plates – Analytical solutions vol.47, 2014, https://doi.org/10.1016/j.euromechsol.2014.06.003
- Buckling analysis of laminated plates by wavelets vol.89, pp.7-8, 2011, https://doi.org/10.1016/j.compstruc.2011.01.007
- Stability Analysis of Laminated Soft Core Sandwich Plates Using Higher Order Zig-Zag Plate Theory vol.22, pp.11, 2015, https://doi.org/10.1080/15376494.2013.874061
- Stability of sandwich plates by mixed, higher-order analytical formulation vol.40, pp.17, 2003, https://doi.org/10.1016/S0020-7683(03)00283-X
- A Novel Higher-Order Shear and Normal Deformable Plate Theory for the Static, Free Vibration and Buckling Analysis of Functionally Graded Plates vol.2017, 2017, https://doi.org/10.1155/2017/6879508
- Linear and nonlinear parametric instability behavior of cylindrical sandwich panels subjected to various mechanical edge loadings vol.23, pp.1, 2016, https://doi.org/10.1080/15376494.2014.918222
- A high-order theory for the analysis of circular cylindrical composite sandwich shells with transversely compliant core subjected to external loads vol.94, pp.7, 2012, https://doi.org/10.1016/j.compstruct.2012.02.002
- Post-buckling of cross-ply laminated rectangular plates containing short random fibers vol.68, pp.3, 2005, https://doi.org/10.1016/j.compstruct.2004.03.018
- Higher order refined computational model with 12 degrees of freedom for the stress analysis of antisymmetric angle-ply plates – analytical solutions vol.80, pp.4, 2007, https://doi.org/10.1016/j.compstruct.2006.07.006
- An improved in-plane displacement model for the stability analysis of laminated composites with general lamination configurations vol.93, pp.6, 2011, https://doi.org/10.1016/j.compstruct.2011.01.006
- Buckling Analysis of Soft-Core Composite Sandwich Plates Using 3D Finite Element Method vol.105-107, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.105-107.1768
- Exact solution for Free Vibration and Buckling of sandwich S-FGM Plates on Pasternak Elastic Foundation with Various Boundary Conditions pp.1793-6764, 2019, https://doi.org/10.1142/S0219455419500287
- Interfacial Strain Energy Continuity Assumption-Based Analysis of an Orthotropic-Skin Sandwich Plate Using a Refined Layer-by-Layer Theory vol.54, pp.3, 2018, https://doi.org/10.1007/s11029-018-9739-3
- Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory vol.44, pp.1, 2012, https://doi.org/10.12989/sem.2012.44.1.015
- Free vibration and parametric instability of viscoelastic sandwich plates with functionally graded material constraining layer vol.230, pp.8, 2000, https://doi.org/10.1007/s00707-019-02433-8
- Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment vol.8, pp.1, 2000, https://doi.org/10.12989/anr.2020.8.1.083
- Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2000, https://doi.org/10.12989/sss.2020.25.4.409