References
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, New Jersey.
- Irons, B.M. and Razzaque, A. (1972), "Experience with the patch test for convergence of tlnite element methods", Math. Foundations of the Finite Element Method, Ed. A.K. Aziz, Academic Press, 557-587.
- Lee, N.-S. and Bathe, K.-J. (1993), "Effects of element distortions on the performance of isoparametric elements", Int. J. Num. Meth. Eng., 36, 3553-3576. https://doi.org/10.1002/nme.1620362009
- Prathap, G. (1993) The Finite Element Method in Structural Mechanics, Kluwer Academic Press, Dordrecht.
- Taylor, E.L., Beresford, P.J. and Wilson, E.L. (1976), "A non-conforming element lor stress analysis", Int. J. Num. Meth. Eng., 10, 1211-1220. https://doi.org/10.1002/nme.1620100602
- Taylor, R.L., Simo, J.C., Zienkiewicz, O.C. and Chan, A.C.H. (1986), "The patch test - A condition for assessing FEM convergence", Int. J. Num. Meth. Eng., 22, 39-62. https://doi.org/10.1002/nme.1620220105
- Wilson, E.L., Taylor, R.L., Doherty, W. and Ghaboussi, J. (1973), "Incompatible displacement models", Numerical and Computer Methods in Structural Mechanics, Eds. S.J. Fenves, N. Perrone, J. Robinson, and W.C. Schnobrich, Academic Press, Inc., New York.
- Zienkiewicz, O.C. (1977), The Finite Element Method, 3rd Ed., McGraw-Hill, New York.
Cited by
- Remedies to rotational frame dependence and interpolation failure of US-QUAD8 element vol.24, pp.11, 2008, https://doi.org/10.1002/cnm.1026
- Mesh-distortion immunity assessment of QUAD8 elements by strong-form patch tests vol.23, pp.2, 2007, https://doi.org/10.1002/cnm.893
- A quadratic plane triangular element immune to quadratic mesh distortions under quadratic displacement fields vol.195, pp.9-12, 2006, https://doi.org/10.1016/j.cma.2005.04.012
- A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field vol.58, pp.11, 2003, https://doi.org/10.1002/nme.836
- A mesh distortion tolerant 8-node solid element based on the partition of unity method with inter-element compatibility and completeness properties vol.43, pp.10, 2007, https://doi.org/10.1016/j.finel.2007.05.008
- Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric, and metric-parametric formulations vol.17, pp.6, 2004, https://doi.org/10.12989/sem.2004.17.6.767
- A technique to develop mesh-distortion immune finite elements vol.199, pp.17-20, 2010, https://doi.org/10.1016/j.cma.2009.11.017
- New superconvergent points of the 8-node serendipity plane element for patch recovery vol.54, pp.8, 2002, https://doi.org/10.1002/nme.460
- Extension of unsymmetric finite elements US‐QUAD8 and US‐HEXA20 for geometric nonlinear analyses vol.24, pp.4, 2007, https://doi.org/10.1108/02644400710748715
- Development of Eight-Node Curved-Side Quadrilateral Membrane Element Using Chain Direct Integration Scheme (SCDI) in Area Coordinates (MHCQ8-DI) pp.2191-4281, 2018, https://doi.org/10.1007/s13369-018-3521-7
- Mesh distortion insensitive and locking‐free Petrov–Galerkin low‐order EAS elements for linear elasticity vol.122, pp.23, 2000, https://doi.org/10.1002/nme.6817