A study on performance improvement of neural network using output probability of HMM

HMM의 출력확률을 이용한 신경회로망의 성능향상에 관한 연구

  • 표창수 (동아대학교 공과대학 전자공학과) ;
  • 김창근 (동아대학교 공과대학 전자공학과) ;
  • 허강인 (동아대학교 공과대학 전기전자컴퓨터공학부)
  • Published : 2000.10.01

Abstract

In this paper, the hybrid system of HMM and neural network is proposed and show better recognition rate of the post-process procedure which minimizes the process error of recognition than that of HMM(Hidden Markov Model) only used. After the HMM training by training data, testing data that are not taken part in the training are sent to HMM. The output probability from HMM output by testing data is used for the training data of the neural network, post processor. After neural network training, the hybrid system is completed. This hybrid system makes the recognition rate improvement of about $4.5\%$ in MLP and about $2\%$ in RBFN and gives the solution to training time of conventional hybrid system and to decrease of the recognition rate due to the lack of training data in real-time speech recognition system.

본 논문은 HMM(Hidden Markov Model)을 이 용하여 인식을 수행할 경우의 오류를 최소화 할 수 있는 후처리 과정으로 신경망을 결합시켜 HMM 단독으로 사용하였을 때 보다 높은 인식률을 얻을 수 있는 HMM과 신경망의 하이브리드 시스템을 제안한다 HMM을 이용하여 학습한 후 학습에 참여하지 않은 데이터를 인식하였을 때 오인식 데이터를 정인식으로 인식하도록 HMM의 출력으로 얻은 각 출력확률을 후처리에 사용될 신경망의 학습용으로 사용하여 신경망을 학습하여 HMM과 신경망을 결합한 하이브리드 시스템을 만든다 이와 같은 HMM과 신경망을 결합한 하이브리드 모델을 사용하여 단독 숫자음에서 실험한 결과 HMM 단독으로 사용하였을 때 보다 MLP에서는 약 $4.5\%$ RBFN에서는 약 $2\%$의 인식률 향상이 있었다. 기존의 하이브리드 시스템이 갖는 많은 학습시간이 소요되는 문제점과 실시간 음성인식시스템을 구현할 패의 학습데이터의 부족으로 인한 인식률 저하를 해결할 수 있는 방법임을 확인할 수 있었다

Keywords