미토콘드리아 유전자, 치토그롬 옥시다제(subunit I)의 염기서열을 이용한 새치성게(Strongylocentrotus intermedius)의 진화과정 분석

Evolution of sea Urchin Strongylocentrotus intermedius Based on DNA Sequences of a Mitochondrial Gene, Cytochrome c Oxidase Subunit I

  • 이윤호 (한국해양연구소 극지연구센터)
  • Lee, Youn-Ho (Polar Research Center, Korea Ocean Research and Development Institute)
  • 발행 : 2000.05.31

초록

우리나라 동해안에 서식하는 새치성게(Strongylocentrotus intermedius)는 둥근성게과(Strongylocentrotidae)에 속하는 냉수성 해양 무척추동물이다. 둥근성게과에는 현재 9종의 성게가 속해 있으나, 아직 종간의 분류 기준, 계통 분류학적 유연관계, 진화과정 등이 잘 밝혀져 있지 않다. 본 연구는 유전자 염기서열이라는 분자형질을 이용하여 새치성게의 종 분류기준을 확립하고 이 종의 계통진화 및 분화 시기를 파악하고자 수행되었다. 이를 위하여 변화율이 빠르고 모계로만 유전되는 특성을 가진 미토콘드리아의 한 유전자인 cytochrome c oxidase subunit I(COI)을 분석하였다. 새치성게의 생식소에서 DNA를 추출하고 중합효소연쇄반응으로 COI 유전자 단편을 선택적으로 증폭하였으며, 클로닝과 시퀀싱 과정을 거쳐 COI 유전자의 단편 1077개 염기쌍 순서(염기서열)를 확정하였다. 이 염기서열과 유전자 데이터베이스(GenBank)에 들어있는 다른 성게 및 해삼, 불가사리의 유전자를 비교하고 그 분자 계통수를 작성함으로써 새치성게의 진화과정을 분석하였다. COI 유전자 계통수는 새치성게가 태평양 동쪽 연안에 서식하는 S. purpuratus와 계통적으로 자매군(sister species)의 관계에 있음을 보였다. 두 종의 분화 시기는 계통수 상 분지의 길이와 화석연대를 고려하여 산출했을 때 지구 온도의 변동이 심했던 약 890만년 전으로 추정되었다. 태평양의 동안과 서안으로 분리된 두 종의 현재 분포와 종분화 시기의 지구 환경조건은 두 종간의 분화가 환경변화에 따른 개체군의 지리적 분리(vicariance)에 의한 것임을 시사해 준다. 한편, 새치성게의 COI 유전자염기서열은 이 종을 대표하는 분자형질로서 둥근성게과의 성게들을 서로 구분할 수 있는 종분류의 기준이 될 것이다.

Sea urchin S. intermedius occurring in the Korean east coast is a cold water species that belongs to the family Strongylocentrotidae of Echinoidea. Although it is known that there are nine species in the family, species identification criteria, phylogenetic relationships, time and process of evolution of the family members have not been uncovered clearly. In the present study, I tried to find some clues to such problems for S. intermedius by means of DNA sequences. For this, cytochrome c oxidase subunit I (COI), one of the mitochondrial genes that evolve fast and follow maternal inheritance was analyzed. DNA was extracted from the female gonad of S. intermedius, a segment of COI gene amplified by polymerase chain reaction (PCR), and finally a total of 1077 base pair sequence of COI obtained by cloning and sequencing the PCR product. The sequence was compared with homologous genes of other sea urchins and echinoderm species. Phylogenetic trees of the COI gene segment revealed that S. intenedius is a sister species of S. purpuratus which lives along the east coast of the Paciflc. With reference to the fossil records of sea urchins and genetic distances in the molecular phylogenies, it is estimated that the two species were separated about 0.89 million years ago when the earth temperature fluctuated significantly. The current disjunct distribution patterns of the two species and the climate change of the earth at the time of separation suggest that speciation might have occurred by vicariance. The COI gene sequence obtained here now can be used as a molecular character which discerns S. intermedius from the other sea urchin species of Strongylocentrotidae.

키워드

참고문헌

  1. 한국동식물도감 v.36 동물편(극피동물) 신 숙;노분조
  2. 한국해양학회지 v.3 성게 알을 이용한 생물검정에 의한 연안해수 수질평가에 관한 연구 유춘만
  3. 한국패류학회지 v.17 복족류(연체동물)의 18Sribosomal DNA의 염가서열 분화 윤숙희;문승여;최병래;김 원
  4. Natural History and Evolution Molecular Markers Avise, J.C.
  5. Echinoderms The Sea Urchin Genus Strongylocentrotus in the Seas of Russia Taxonomy and Ranges Bazhin, A.G.;Mooi, R.(ed);M. Telford(ed)
  6. Mol. Biol. Evol. v.15 The molecular rvolution of sperm bondin in six spacies of sea urchins(EchinoideaL Strongylocentrotidae) Biermann, C.W.
  7. Nature v.355 Evolution of king crabs from hermit crab ancestor Cunningham, C.W.;N.W. Balckstone;L.W. Buss
  8. Mol. Phlogene. Evol. v.4 Phylogenetics analysis of pacific salmon(genus Oncorhynchus) based on mitochondrial DNA sequence data Domanice, M.J.;R.B. {hillips
  9. Am. Nat. v.111 On the problem of discovering the most parsomonious tree Fitch, W.M.
  10. Eurythenes guyllus. Mar. Biol. v.126 Geographic and bathymetric patterns of mitochondrial 16s rRNA sequence diverhence among deep-sea amphipods France, S.C.;T.D. Kocher
  11. J. Mol. Evol. v.16 Evolution of sea urchin non-repetitive DNA Hall, T.J.;J.W. Grula;E.H. Davidson;R.J. Britten
  12. Nature v.312 DNA sequences from the quagga, an extinct member of the horse family Higuchi, R.;B. Bowman;M. Freiberger;O.A. Ryder;A.C. Wilson
  13. J. Korean Fosh. Soc. v.29 Stock Characterization of the Fleshy Prawn(Penaeus chinensis) in the Yellow Sea by intraspecific sequence variation of the Cytochrome c Oxidase Subunit I gene Hwang, G.L.
  14. Mol. Biol. v.202 Nucleotide sequence and gene organization of sea urchin mitochondrial DNA Jacobs, H.T.;D.J. Elliott;V.B. Math;A. Farqugarson
  15. Sarsia v.57 The Strongylocentrotidae(Echinoidea), A morphologic and systimatic study Jensen, M.
  16. J. Mol. Evol. v.16 A simple method for estimating rate of base substitutions through comparative studies of nucleotide sequences Kimura, M.
  17. Mar. Biol. v.127 Milecular phylogeny of vestimentiferans collected areund Japan, revealed by the nucleotide sequences of mitochondreal DNA Kojima, S.;R. Segawa;J. Hashimoto;S. Ohta
  18. MEGA: molecular evolutionary genetic analysis, version 1.01 Kumar, S.;KL.Tamura;M. Nei
  19. Phylogenetic Analysis of DNA Sequences Evolutionary Analysis of Length-Variable Sequencef: Divergent Domains of Ribosomal RNA Larson, A.
  20. Mar. Biol. v.124 Evolution and systematics in Haliotiae(Millusca: Gastropoda): inferences from DNA sequence of sperm Llysin Lee. Y.-H.;V.D. Vacquier
  21. Limnol. Oceanogr. v.40 Distribution of Holothurian larvae determined sith species specific fenetic probes Medeiros-Bergen, D.E.;R.R. Olson;J.A. Conroy;T.D. Kocher
  22. Paleoceanography v.2 Tertiary oxygen isotope synthesis, sea level history, and continental marginerosion Miller, K.G.;R.G. Fairbanks;G.S. Mountain
  23. Nature v.357 Rates of Mitochondrial DNA evolutin in sharks are slow compared with mammals Martin, A.P.;J.P. Naylor;S.R. Palumbi
  24. Camarodonta Ⅱ v.Ⅲ no.3 A monography of the Echinoidea Mortensen, Th.
  25. J. Phycol. v.34 Mediterranean Caulerpa taxifolia and C. Mexicana(chlorophyta) are not conspecific Olsen, J.L.;M.Valero;I. Meusvier;S. Boele-Bos;W.T. Stam
  26. J. Hered. v.89 Species identification using genetic tools: the value of nuclear and mitochondreal gene sequences in whale conservation Palumbi, S.R.;F. Cipriano
  27. Mar. Biol. v.126 Krill evolution and the Antarctic ocean currentsL evidence of vicariant speciation as inferred by molecualr data Patarnello, T.;L. Bargelloni;V. Varotto;B. Battaflia
  28. J. Mil. Evol. v.22 Evolutionary conservation of DNA sequences expressed in sea urchin eggs and early embryos Roberts, J.W.;S.A. Johnson;P. Kier;T.J. Hall;E.H. Davidson;R.J. Britten
  29. Mol. Biol. Evol. v.4 The neighbor-joining method: A new Method for reconstructing phylogenetic trees Saitou, N.;M. Nei
  30. Mol. Biol. Evol. v.5 Phylogenetic felationship, divergence times, and rates of molecular evolution for Camarodont sea urchin Smith, A.B.
  31. Version 3.1. Laboratory of Molecular Systematics Phylogenetic Analysis Using Parsimony Swofford, D.L.
  32. Nucl. Acids Res. v.22 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Thompson, J.D.;D.G. Higgins;T.J. Gibson
  33. Paleobiology v.15 Geographical restrictionas a guide to the carses of extinction: the case of the cold northern oceans during the Neogene Vermeij, G.J.
  34. Science v.253 African populations and the evolution of human mitochondrial DNA. Vigilante, L.;M. Stoneking;H. Herpending;K. Hawkes;A.C. Wilson