白雲山 榛息 地衣類蠹 利用한 오존 敏感性 地表種 選拔 ${ }^{1 *}$许宰就 ${ }^{2}$ •金圾基 ${ }^{3}$

Investigation of Lichen Species as a Biomonitor of Atmospheric Ozone in＇Backwoon＇Mountain，Korea＇${ }^{\text {＊}}$

Jae－Seoun Hur ${ }^{2}$ and Pan－Gi Kim ${ }^{3}$

요 약

Abstract

대기오염 지표생물로 이용 가능한 국내 분포 地衣類를 선발하기 위하여 전남 광양 백운산 지역에 분 포하는 엽상체（foliose）및 수지상（fructicose）地衣類의 種과 被度를 조사하고，오존에 대한 생쳬반응 을 조사하였다．

백운산에 서식하고 있는 地衣類는 총 9 과 20 종 34 속의 엽상체 및 수지상 地衣類로 대기오염에 내성인 종（Lecanora sp．）부터 예민한 종（Ramalina sp ．）까지 매우 다양한 地衣類가 분포하고 있었다．이 지역의 주요 엽상체 및 수지상 地衣類는 Leptogium sp．，Parmelia sp．，Parmotrema sp．，Phaeophyscia sp．， Cladonia sp．등이었다．

백운산 분포 地衣類 중에서 우리나라 전역에 널리 분포하면서 동정이 용이한 엽상체 地衣類 3 種 $(P$ ． tinctorum，P ．austrosinense，Certrelia braunsiana）과 수지상 地衣類 1種（Ramaliana yasudae）을 0.2 ppm 에서 1 日 8 시간씩 2 주간 오존에 노출시킨 결과 오존에 노출된 地衣類는 MDA 와 HPCD 가 증가 하고 엽록소가 감소되었으나，수용성 단백질의 함량은 변화를 보이지 않았다．MDA，HPCD，엽록소 파괴 정도를 기준으로 하였을 때，오존에 대한 민감 정도는 P ．nustrosinense $>P$ ．tinctorum $>C$ ． braunsiana $>R$ ．yasudae 순으로 나타났다．

Abstract

Lichen flora of＇Backwoon＇mountain，Korea，was investigated during the summer of 1998 and 1999 to screen out lichen species which can be used as a biomonitor for atmospheric ozone．The identified foliose or fructicose lichens in the area were classified into 9 families， 20 genera and 34 species．The dominant lichen species in the area were found to be Leptogium sp．，Parmelia sp．，Parmotrema sp．， Phaeophyscia sp．and Cladonia sp．It was also found that lichen species showing a wide range of sensitiveness to air pollution were distributed in＇Backwoon＇mountain．The Parmotrema austrosinense， P ．tinctorum，Certrelia braunsiana and Ramalina yasudae collected in the area were exposed to ozone at the level of $200 \mathrm{ppb}, 8 \mathrm{hr} /$ day in controlled growth chamber for 2 weeks．Malondialdehyde（MDA）， hydroperoxy conjugated dienes（HPCD），soluble protein content and OD435nm／OD415nm ratio for phaeo－ phytinization of chlorophyll were measured and a pollution index（PI）was calculated for each lichen． Ozone exposure severely damaged to the lichens in the order of P ．austrosinense $>P$ ．tinctorum $>C$ ． braunsiana $>R$ ．yasudae．P．austrosinens easily identified and widely distributed in Korea is likely to

[^0]be a very useful biomonitor of air pollution，especially for ozone．These results indicate that Korean lichen species can be used as a biomonitor for air pollution to evaluate air quality contaminated with ozone．

Key words ：ozone，Parmotrema austrosinense，Parmotrema tinctorum，Cetrelia braunsiana，Ramalina yasudea

서 론

地衣類는 藻類（algae，photobionts）와 합께 共生하는 곰팡이（fungi，mycobionts）로 세계적으로 약 $22,000 \sim 23,000$ 種이 분포하고 있으며 오래 전 부터 약용，식용，장식용 쟤료로서 여러 나라에 서 널리 이용되어지고 있다（Crittenden et al．， 1995；Richardson，1988）．최근에는 유럽 등에서 환경오염 지표생물로서 이용되고 있으며，특히 대기오염과 중금속오염에 대한 모니터링 소재로 서 많은 연구가 이루어지고 있다（Bates et al． 1996；Garty et al．，1997；Gordon et al．，1995； Loppi와 Bargagli，1996；Seaward，1992）．

우리나라에서는 1915년에 처음으로 地衣類의分布에 대하여 보고（Hue，1915）된 후에 많은 연 구자들에 의하어 분류 및 동정에 관한 연구가 수 행되었으며，현재 남한에는 약 400 여종의 地衣類 가 분포하는 것으로 보고되었다（Park，1990）．최 근에는 대기오염의 지표생물로 활용하기 위한 연 구가 수행되고 있는데（가강현 등，1995；유정환 등， 1995 ；추은영과 김종갑，1998），이들 연구는 여천，울산공단과 같은 오염물질 배출원이 소재 하는 지역에 분포하는 地衣類의 종류와 특정 種 의 頻度를 조사하거나（유정한 등，1995；추은영 과 김종갑，1998），비교적 청정한 지역의 地衣類 를 오염지역에 이식하여 이들의 생장과 엽록소 파괴정도 및 地衣體內의 황함량을 조사하는 연구 （가강현 등，1995）가 주를 이루고 있다．그러나 대기오염물질의 종류와 이에 대한 地衣類의 종별 반웅 정도가 구명되지 않은 상태에서는 대기오염 도를 정량적으로 해석하기 매우 곤란하다．

地衣類를 이용한 대기오염평가 방법 중의 하나 인 地衣類 移植實驗을 실시할 경우 地衣類 채취 지역이 오염도 조사를 실시하려고 하는 대상 지 역과 지리적으로 가깝고 유사한 기상 및 생육환 경을 보일수록 유리하므로（Garty et al．，1997； Gonzalez와 Pignata，1997），본 연구에서는 국내 주요 대기오염지역인 여천공단에 근접한 전남 광 양 백운산 지역에 서식하는 엽상체（foliose）와 수 지상（fruticose）地衣類를 중심으로 地衣類 분포

조사를 실시하였고，이 지역에 분포하는 地衣類 를 중심으로 대기오염원인 오존에 대한 地衣類 종류에 따른 민감 정도를 조사하였다．

재료 및 방법

1．조사지

전남 광양에 위치한 백운산（해발 $1,218 \mathrm{~m}$ ）에서 $\mathrm{N} 35^{\circ} 01^{\prime \prime} \sim 08^{\prime \prime}$ ，E $127^{\circ} 35^{\prime \prime} \sim 40^{\prime \prime}$ 의 약 $84 \mathrm{~km}^{2}$ 면 적에 해당하는 지역의 地衣類 분포를 조사하였다． 조사 지점은 11 개 지점으로 Fig． 1 과 같다．이 지역의 주요 수종은 졸참나무（Quercus serrata）， 서어나무（Carpinus laxiflora），동백나무（Camellia japonica），잣나무（Pinus koraiensis），소나무（Pinus densiflora），굴참나무（Quercus variabilis），상수 리나무（Quercus acutissima）등이녀，이 지역의
 온평균은 $8.7^{\circ} \mathrm{C}$ ，월별 최고기온평균은 $19.0^{\circ} \mathrm{C}$ ，연 평균 강우량은 1219 mm 이다（서울대학교 부속연습 림，1996）．

Fig．1．Simplified map of Backwoon mountain， Korea，presenting 11 locations where lichens were collected．

2．地衣類 동정

1998년 6월에서부터 1999년 7월 사이에 樹皮， 이끼，토양 및 바위 위에 서식하는 地衣膻를 현 장에서 1 차 동정을 실시하고 피도를 조사하였다． 피도는 $20 \times 10 \mathrm{~cm}$ 의 方形 틀에 $1 \times 1 \mathrm{~cm}$ 격자망을 부착하여 Muhle와 LeBlanc（1975）이 사용한 방 법과 동일하게 조사하였다．
地衣體가 서식하고 있는 매체와 함께 조심스럽게 채취하여 실험실로 옮겨 구체적인 동정을 실시하였 다．실험실에서의 地衣澧 동정은 우선 $\operatorname{Park}(1990)$ 의 분류방법과 일본 지의식물도감（吉村，1974）을 참조하였으며，보다 정확한 동정을 위하여 발색 시약인 $\mathrm{KOH}(\mathrm{K}), \mathrm{p}$－phenylenediamine $(\mathrm{P}), \mathrm{Ca}$ $(\mathrm{OCl})_{2}(\mathrm{C})$ 와 KC 혼합한 시약을 地衣骾 皮㞕과髄屓（medular layer）에 직접 가하여 발색 반응 유 무를 조사하는 Hale（1979）의 정색반응（spot test） 법을 이용하였다．

3．지의쳬 오존노춥 및 반응 조사

1）오존노출
오존노출시험은 백운산 지역에 분포하는 地衣類 중에서 비교적 동정이 눱고 넓은 지역에 분포하는 엽상체 地衣類 P ．austrosinense，P ．tinctorum， Certrelia braunsiana와 수지상 地衣類 Ramalina yasudae를 대상으로 실시하였다．엽상체 地衣類 3 종은 착생면적이 약 $50 \mathrm{c} \mathrm{\pi}$ 인 地衣胆를 1 개체로 간주하였으며，수지상 地衣類는 크기가 작고 바 위에 직립형으로 착생하므로 약 3 cm 높이 이상의地衣體 만을 선발하여 사용하였다．
부착매체（수피，바위）와 합께 채집한 地衣體를 초순수로 세척하여 2 대（오존노출용，대조용）의 生長箱 $(\mathrm{L} 600 \times \mathrm{W} 600 \times \mathrm{H} 700 \mathrm{~mm})$ 에서 엽상체 地衣類 는 각각 5 개체，수지상 地衣類는 각각 25 개체를 배양하였다．이때 생장상의 온도는 $25(\pm 0.5)^{\circ} \mathrm{C}$ ， 상대습도는 $65 \sim 80 \%$ 를 유지하였으며， $60 \mu \mathrm{~mol}$ $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ 의 光度로 하루 12 시간（ $8: 00 \sim 20: 00$ ）照射하였다．오존노출시험은 地衣類가 생장상의 환 경조건에 적응할 수 있도록 배양 후 3일째에 실 시하였으며，하루 8 시간씩 $(8: 00 \sim 16: 00) 200 \mathrm{ppb}$ 의 농도로 2 주간 노출하였다．대조용 생장상의 오존농도는 $16 \sim 27 \mathrm{ppb}$ 로 자연대기수준의 오존농 도보다 낮은 농도로 유지하였다．오존노출을 위하 여 오존발생기를 이용하여 고압산소가스를 방전시 켜 발생된 오존을 이용하였으며，오존노출 생장상 의 농도조절과 두 생장상의 오존농도 모니터링은
photometric ozone analyzer（Model 400，API）를 사용하였다．시험기간 중에 地衣體의 과도한 건조 를 막기 위하여 2 일 간격으로 1 차 증류수를 표면 이 젖을 징도로 충분히 살포하였으며，地衣體 表面의 가시피해의 발현 여부를 매일 관찰하였다．
2 주간의 노출시험을 마친 地衣腤는 생체중을 측 정한 즉시 액화질소에 보관하여 오존에 대한 地衣類 의 반응을 조사하는데 필요한 시료로 사용하였다．

2）오존노출 반웅조사

（1）수용성 단백질 합량
地衣膡의 수용성 단백질 함량은 Von Arb와 Brunold（1989）방법을 변형하여 측정하였다．액화 질소로 동결된 약 300 mg 의 地衣體를 분말화하여， 15 mM MgCl 가 함유된 0.1 M Tris－ HCl buffer $(\mathrm{pH} 8.0)$ 로 단백질을 추출하였다．추출한 시료 $200 \mu \ell$ 에 10% TCA（trichloroacetic acid） 100μ 를 첨가하여 $10,000 \mathrm{mpm}$ 에서 10 분간 윈심분리 하였 다．침전물에 1 M Tris－ HCl buffer（ pH 9.0 ） 200 $\mu \ell$ 를 첨가하여 완전히 녹인 후에 동일한 조건으로 원심분리를 실시하였다．상등액 $50 \mu \ell$ 를 취하여 Bradford（1976）방법을 이용하여 수용성 단백질 함 량을 측정하였으며，단백질 정량을 위하여 BSA （bovine serum albumin）을 표준물질로 이용하였다．
（2）MDA（malondialdehyde）함량
MDA 함량은 비색법（Heath와 Packer，1968）을 이용하여 측정하였다．이를 위하여 액화 질소로 동결한 地衣體 약 100 mg 을 분말화시킨 다음， 2.5 $\mathrm{m} \ell$ 의 초순수를 이용하여 均質化시켯다．균질화된 시료에 $0.5 \% \mathrm{TBA}(2$－thio－barbituric acid）를 함 유한 $20 \% \mathrm{TCA}$ 를 2.5 m 를 첨가한 후 $95^{\circ} \mathrm{C}$ 에서 30 분간 반응시켰다．시료를 ice bath에서 냉각시 켜 반응을 종료시킨 후 $15,000 \mathrm{rpm}$ 에서 30 분간 원 심 분리하였다．상등액을 회수한 후에 532 nm 에 서 홉광도를 측정하였으며 600 nm 에서 나타나는 비특이적 ㅎ⿱ㅂ광도를 측정하여 이를 감한 흡광도를 MDA 함량 계산에 이용하였다．MDA 함량 계산 은 extinction coefficient $155 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$（Kwon et al．，1965）을 적용하여 실시하였다．
（3） HPCD （hydroperoxy conjugated dienes）합량 HPCD 측정을 위하여 액화질소로 동결한 약 100 mg 의 地衣體를 분말화한 후，막자사발에서 $99 \%(\mathrm{v} / \mathrm{v})$ 에탄올로 균질화시켰다．균질화된 시료

를 $15,000 \mathrm{rpm}$ 에서 30 분간 원심분리 시킨 후，상 등액의 OD 값을 234 nm 에서 측정하였다． HPCD 의 함량은 extinction coefficient $2.74 \times 10^{4} \mathrm{M}^{-1}$ cm^{-1}（Fishwick과 Swoboba，1977）을 적숑하여 계 산하였다．
（4）엽록소의 파괴 정도
엽록소 파괴정도는 Garty et al．（1992）의 방법 을 이용하여 조사하였다．약 100 mg 의 地衣骾를 $5 \mathrm{~m} \ell . \mathrm{DMSO}$（dimethylsulfoxide）에 침지시킨 후，暗狀態에서 12 시간 동안 보관하였다．地衣體에서 광합성 색소가 완전히 추출되어 탈색된 것을 확 인한 다음，UV spectrophotometer（UV－1601， Shimadzu）로 추출액의 홉광도를 415 nm 와 435 nm 에서 측정하였다．엽록소 파괴정도는 $O D 435 \mathrm{~nm} /$ OD415nm 비율로 표시하였다．

결 과

1．백운산 분포 地衣類

백운산 지역에는 엽상체（foliose），수지상（fructi－ cose）및 가상체（crustose）地衣類가 14科 26 屬 이 상이 分布하였으며，엽상체 地衣類가 약 65% 로 가장 높은 분포를 나타내었다．가상체 地衣類는 바위나 樹皮에 착생하여 서식하였는데 동정 및 분류 체계가 엽상체나 수지상 地衣類에 비하여 불완전하고 주로 유럽에 분포하는 地衣類를 기준 으로 되어 있어서 정확한 동정 및 분류에 어려움 이 많아 속 수준까지의 동정을 실시하였다．그 결과 백운산에서 관찰된 가상체 地衣類는 Bacidia sp．，Graphis sp．，Pyrenula sp．，Megalospora sp．，Caloplaca sp．，Ochrolechia sp．이었으며， 가강현 등（1997）이 보고한 Graphis scripta을 조

Table 1．Distribution of lichen species in＇Backwoon＇mountain，Korea

Lichen species				Habitate
Foliose	Coccoarpiaceae Collemataceae	Coccoardia	erythroxyli	epiphytic
		Collema	japonicum	
		Lettogium	cryanescens	rock
			menziesii	epiphytic
			moluccanum	＂
			saturninum	＂
	Peltigeraceae Parmeliaceae	Peltigera	degenii	moss
		Cetrelia	braunsiana	epiphytic
		Canoparmelia	aptata	＂
		Flavoparmelia	caperata	＂
		Parmelia	marmariza	＂
		Punctelia	rudecta	＂
		Parmotrema	austrosinense	＂
			clavulifera	＂
			tinctorum	＂
		Xanthoparmelia	subramigera	rock
		Myelochroa	leucotyliza	epiphytic
	Hypogymniaceae	Hypogymnia	mundata	＂
		Menegazzia	terebrata	＂
	Physciaceae	Anaptychia	isidiza	＂
		Heterodermia	diadermata	＂
			hypoleuca	＂
			pseudopseciosa	＂
		Phaeophyscia	endococcinodes	＂
			hirtuosa	＂
			orbicularis	，
Fructicose	Ramalinaceae Cladoniaceae	Ramalina Cladonia	yasudae	rock
			chlorophaea	soil
			coniocreae	soil．rock
			fimbriata	rock
			ramulosa	soil
			scarbriusula tenuiformis	soil，epiphytic
	Stereocaulaceae	Stereocaulon	nigrum	rock

사지에서 확인할 수 있었다．
동점 및 분류가 용이하여 지표생물로 활용하기 쉬운 엽상체 및 수지상 地衣類 중에서 동정이 이 루어진 地衣類는 9科20屬34種이었다（Table 1）． 이들 중 약 75% 정도가 엽상체 地衣類였으며， 주로 樹皮나 나무 가지에 着生하여 서식하고 있 었고，일부는 바위에 착생하여 서식하고 있었다． 엽상체 地衣類의 약 30% 는 Parmeliaceae로 가 장 높은 출현도를 나타냈으며，엽상체 地衣類가 착생하여 서식하는 수종은 소나무，굴참나무，감 나무（Diospyros kaki），고로쇠나무（Acer mono），

Fig．2．Coverage percent of foliose and fructicose lichen species distributed in＇Backwoon＇ mountain，Korea

동백나무 등이었다．특히 동배ㄴㅏㅏㅁㅜ 군락지（Fig． 1．C）에서는 동정된 엽상체 地衣類의 약 30% 가 관찰되어，다양한 종류의 地衣類가 높은 피도로 混息함을 알 수 있었다．수지상 地衣類는 동정된 地衣類의 약 25% 이었으며，그 대부분이 Cladonia $s p$ ．이다．주요 着生地는 토양이나 바위였으머， Cladonia coniocraea는 소나무 지표부분의 樹皮 에서도 관찰되었다．

엽상체와 수지상 地衣類的 피도를 백분율로 나 타낸 Fig．2를 보면，Phaeophycia sp．（68\％）， Parmotrema sp．（64\％），Parmelia sp．（60\％）가 60 $\%$ 이상의 때우 높은 피도를 나타낸다． 3 姿 이외에 50% 이상의 피도를 나타낸 地衣類는 Punctelia $s p$ ．（55\％），Collema sp．（54\％），Myelochlora sp． （50\％），Peltigera $s p$ ．$(50 \%$ ）이다．그 바에도 Anaptychia sp．，Cladonia sp．，Leptogium sp．， Stereocaulon sp．，Xanthoparmelia sp．가 30% 이상의 피도를 보였다．엽상체 및 수지상 地衣類의 출현정도와 피도를 기준으로 하였을 때，백운산에 는 Leptogium sp．，Parmelia sp．，Parmotrema sp．，Phaeophyscia sp．및 Cladonia sp．가 주된地衣類임을 알 수 있었다．

2．地交類 종류에 따론 오존 민갑 정도

백운산에서 가장 높은 출현빈도를 나타낸 Par meliaceae 屬의 P ．austrosinense，P ．tinctorum

Table 2．Concentrations of soluble protein，malondialdehyde（MDA）and hydroperoxy conjugated dienss （HPCD）of the lichens exposed to ambient air（control）or ozone at the level of $0.2 \mathrm{ppm} / \mathrm{hr}$ ， $8 \mathrm{hr} /$ day for 2 weeks．

Lichen	Soluble protein （mg／FW）			MDA（ $\mu \mathrm{mol} / \mathrm{FW}$ ）			HPCD（mmol／FW）		
	Ozone	Control	$\begin{gathered} \% \\ \text { control } \end{gathered}$	Ozone	Control	$\begin{gathered} \% \\ \text { control } \end{gathered}$	Ozone	Control	$\begin{gathered} \% \\ \text { control } \end{gathered}$
Ramalina yasudae	$\begin{aligned} & 63.34 \\ & (5.92) \end{aligned}$	$\begin{array}{r} 64.85 \\ (3.72) \end{array}$	$\begin{gathered} 97.7 \\ \mathrm{n} . \mathrm{s} \end{gathered}$	$\begin{gathered} 49.9 \\ (3.90) \end{gathered}$	$\begin{gathered} 43.1 \\ (4.50) \end{gathered}$	115.8	$\begin{gathered} 17.8 \\ (0.57) \end{gathered}$	$\begin{gathered} 17.7 \\ (0.62) \end{gathered}$	$\begin{gathered} 100.4 \\ \mathrm{n} . \mathrm{s} \end{gathered}$
Parmotrema austrosinense	$\begin{aligned} & 47.28 \\ & (1.42) \end{aligned}$	$\begin{aligned} & 46.11 \\ & (2.25) \end{aligned}$	$\begin{gathered} 102.5 \\ \text { n.s } \end{gathered}$	$\begin{gathered} 27.4 \\ (3.10) \end{gathered}$	$\begin{gathered} 16.3 \\ (2.67) \end{gathered}$	$\underset{* * *}{168.1}$	$\begin{gathered} 34.0 \\ (6.41) \end{gathered}$	$\begin{gathered} 27.8 \\ (3.82) \end{gathered}$	$\underset{* *}{122.0}$
Parmotrema tinctorum	$\begin{aligned} & 64.09 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 67.72 \\ & (3.41) \end{aligned}$	$\begin{gathered} 94.6 \\ \mathrm{n} . \mathrm{s} \end{gathered}$	$\begin{gathered} 17.0 \\ (3.52) \end{gathered}$	$\begin{gathered} 12.9 \\ (2.83) \end{gathered}$	131.8	$\begin{gathered} 61.4 \\ (1.96) \end{gathered}$	$\begin{gathered} 40.8 \\ (1.40) \end{gathered}$	$\underset{* * *}{150.5}$
Cetrelia braunsiana	$\begin{aligned} & 29.96 \\ & (1.83) \end{aligned}$	$\begin{aligned} & 31.93 \\ & (4.65) \end{aligned}$	$\begin{gathered} 83.5 \\ \text { n.s } \end{gathered}$	$\begin{gathered} 20.1 \\ (1.88) \end{gathered}$	$\begin{gathered} 15.4 \\ (2.00) \end{gathered}$	130.5	$\begin{gathered} 30.1 \\ (1.52) \end{gathered}$	$\begin{gathered} 26.3 \\ (0.86) \end{gathered}$	$\underset{* * *}{114.4}$

The data are the means of 5 replicates and（standard deviation）．The asterisks indicate significant differences in P values between control and ozone of $*<0.05, * *<0.01$ and $* * *<0.001$ ．n．s ：not significant

D）Parmotrema tinctorum

H）Ramalina yasudae

（i）Ramalina yasualae

B）Parmotrema austrosinense

F）Cetrelia braunsiana

A）Parmotrema austrosinense

E）Cetrelia braunsiana

[^1]Table 3．The effects of ozone exposure on chloro－ phyll degradation in the lichens distributed in＇Backwoon＇Mt．，as expressed by changes in the $0 D 435 \mathrm{~nm} / 415 \mathrm{~nm}$ ratio．

Lichens	OD $435 \mathrm{~nm} / \mathrm{OD} 425 \mathrm{~nm}$ ratio		
	Ozone	Control	\％of control
Ramalina yasudae	$\begin{gathered} 1.126 \\ (0.08) \end{gathered}$	$\begin{aligned} & 1.234 \\ & (0.12) \end{aligned}$	$\begin{gathered} 90.9 \\ \mathrm{n} . \mathrm{s} \end{gathered}$
Parmotrema austrosinense	$\begin{gathered} 0.646 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.908 \\ (0.003) \end{gathered}$	71.2
Parmotrema tinctorum	$\begin{gathered} 1.004 \\ (0.005) \end{gathered}$	$\begin{gathered} 1.064 \\ (0.005) \end{gathered}$	94.4
Cetrelia braunsiana	$\begin{gathered} 1.165 \\ (0.019) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.019) \end{gathered}$	${ }_{* *}^{91.6}$

The data are the means of 5 replicates and（stan－ dard deviation）．
The asterisks indicate significant differences in P values between control and ozone of $*<0.05$ ， ＊＊＜0．01 and $* * *<0.001$ ．n．s ：not significant

및 C．braunsiana와 수지상 地衣類 R．yasudae （Fig．3）를 오존에 노출한 다음 地衣脰内의 수용 성 단백질，MDA， HPCD ，엽록소 파괴 정도를 조사하였다（Table 2，Table 3）．
오존 노출시험 기간동안 地衣體 표면에 전형적 인 가시피해 증상인 소립반점（spot）이나 백화현상 （bleach）은 관찰되지 않았다．그리고 오존노출시 험을 종료한 이후에 조사한 수용성 단백질 함량 은 오존처리구가 대조구에 비하여 낮은 함량을 나타내었으나 통계적 유의성은 없었다．

오존의 加害 부위 중의 하나인 세포막의 불포 화 지방산이 산화되어 생성되는 MDA는 P ． austrosinense의 오존처리구가 대조구에 비하여 약 1.7 배로 가장 높은 함량을 나타내었다．P ． tinctorum과 C．braunsiana도 오존처리구가 대 조구에 비하여 높은 함량을 나타내어 오존처리에 의한 MDA함량의 증가를 확인할 수 있었다．

지방 산화와 관련이 있는 HPCD 는 R ．yasudae 를 제외한 3 종의 地衣類가 대조구에 비하여 오존처리 구가 높은 경향을 나타내었다．톡히 P．tinctorum 는 오존처리구가 대조구에 비하여 약 1.5 배 높은 함량으로 가장 현겨한 차이를 나타내었다．

한편，地衣類의 엽록소 파괴 정도를 나타내는

OD435nm／OD415nm 비율은 4 종의 地衣類 모두 가 오존처리구가 대조구에 비하여 높은 감소율을 나타내었으며，P．austrosinense는 30% 정도 감 소를 나타내어 가장 피해가 심한 것으로 나타넜 다．

地衣骾 호존피해 지표인 MDA 함량， HPCD 합량， OD435nm／OD425nm ratio를 오염지수（pollution index：PI）로 나타내기 위하여，대조 地衣體에 대한 오존노출 地衣體의 비를 산출하여 전체 합으 로 산출하였다 $(\mathrm{PI}=\mathrm{MDAoz} / \mathrm{MDAcon}+\mathrm{HPCDoz}$ ／HPCDcon＋1／（RATIOoz／RATIOcon））．그 결 과，P ．austrosinense는 4．31，P．tinctorum는 3．88，C．braunsiana는 3．47，R．yasudae는 3.26 로，P ．austrosinense가 가장 높은 값을 나타내어 오존에 민감한 것으로 조사되었다．

고 찰

1．백운산 분포 지의큐의 지표생률 이용 가능성

백운산 지역에는 대기오염원에 민감한 엽상체 나 수지상 地衣類 이외에도 가상체 地衣類를 포 함하여 약 14 과 26 속 이상이 분포하여 비교적 다 양한 地衣類가 백운산 지역에 서식하는 것으로 조사되었다．일반적으로 地衣類는 실험실 내에서 인공적으로 배양하기 매우 어려우므로 이를 이용 한 대기오염평가는 청정지역의 건전한 地衣類를 조사 대상 지역에 이식하여 여러 가지 반응을 살 펴보는 것을 주된 방법으로 하고 있다．그러므로地衣類 채춰 지역이 오염도 조사를 실시하려고 하 는 대상 지역과 지리적으로 가깝고 유사한 기상 및 생육한경을 보일수록 유리하다（Garty et al．， 1997；Gonzalez와 Pignata，1997；가강현 등， 1995）．실제로 백운산 지역에 가장 인접한 대기 오염 피해지역인 여천공단 지역에서 실시된 地衣類 분포 조사（유정한 등，1995）에서 나타난 것처 럼 오염 배출원에서 10 km 이내 지역에서 확인된地衣類는 Cladonia sp．Dirinaria sp．Lecanora sp．Lecidea sp．Porpidia sp．P．tinctorum， Stereocaulon sp．Xanthoparmelia sp．의 7속이 며 이 중 엽상체 地衣類는 P ．inctorum 1 종으로 피도가 1% 내외로 매우 빈약한 분포를 보이는 것으로 나타났다．이처럼 오염원 피해가 진행된 지역에서는 대기오염원에 강한 가상체 地衣類가 주요 地衣類로 분포하지만，대기오염원에 민감한地衣類인 엽상체 地衣類는 저의 찾아보기 힘들

다．그러므로 이러한 지역에서 地衣類를 이용한 대기환경 평가는 비교적 청정한 지역으로부터 건 전한 地衣類를 이식하여 평가할 수밖에 없는 실 정이다．톡히 백운산 지역에 분포하는 地衣類 중 에는 $40 \mu \mathrm{~g} / \mathrm{m}^{3} \mathrm{SO}_{2}$ 에서도 영향을 반을 만큼 SO_{2} 에 매우 민감한 것으로 알려진 Ramalina sp．地衣類부터 $150 \mu \mathrm{~g} / \mathrm{m}^{3} \mathrm{SO}_{2}$ 수준에서도 생존이 가능 한 Lecanora sp ．와 같은 내성 地衣類까지 다양 한 地衣類들이 분포하고 있을 뿐만 아니라， $57 \mu \mathrm{~g}$ $/ \mathrm{m}^{3} \mathrm{SO}_{2}$ 수준이 생육한계농도로 보고된（추은영과 김종갑，1998；Kovacs，1992）P．austrosinensis 도 백운산 지역에 분포하고 있는 것으로 나타났 다．이런 의미에서 백운산 지역에 분포하는 地衣類에 대한 조사는 차후 地衣類를 이용한 인근 공 단지역의 대기환경평가 연구에 새로운 재료 밎 방법을 제공할 수 있을 것으로 기대된다．

2．地衣類 종류에 따른 오존 민감정도

대기오염에 의하여 地衣類에 나타나는 피해를 평 가하기 위하여 중금속이나 황과 같은 오염물질의 축적 정도（Garty와 Hagemeyer，1988；Gonzales 와 Pignata，1994），엽록소함량（Henriksson과 Pearson，1981），엽록소 파괴정도（Gonzales et al．， 1996），ATP 함량 변화（Kardish et al．，1987）， 에틸렌 함량 변화（Epstein et al．，1986），광합성 효율 변화（Canaani et al．，1984；Scheidegger와 Schroeter，1995），세포막 붕괴에 따른 염류유출 （Rope와 Pearson，1990；Tarhanen et al．，1997）， 세포막 지방의 과산화（Gonzales et al．，1996； Levin과 Pignata，1995）등과 같은 여러 가지 생 리，생화학적 반응들이 조사되었다．오존과 같은 대기오염원이 생물체 내로 유입되어 피혀를 유발 하는 과정에서 제일 먼저 세포막과 접촉하게 되 는데 일단 세포막을 통과한 오존의 반응산물은 세포 내로 이동하여 세포 대사작용에 영향을 미 치게 된다．그러므로 세포막은 오존（또는 오존 유 래 활성산소）의 세포내 유입 과정에서 작용하는 첫 번째 방어 장벽인 동시에 오존에 의하여 제일 먼저 피해를 받는 부위라고 할 수 있다．특히 오 존은 세포막 지방의 과산화를 유발하는 강력한 촉 매제로서 잘 알려져 있으므로（Menzel，1976）오 존에 노출된 세포에서 MDA 와 같은 산화산물의 존재는 불포화지방산의 산화（세포막 파괴）가 진행 되었다는 것을 의미한다． HPCD 도 MDA 와 마찬 가지로 지방이 산화되는 과정에서 불포화지방산

의 이중결합이 재배열됨으로서 diene conjugation 이 일어나게 되고，그 결과 오존과 같은 강력한 산화물질에 노출된 세포에서 함량이 증가하게 된 다．그러므로 MDA 와 HPCD 의 증가는 오존피해 정도를 판정할 수 있는 좋은 지표라고 할 수 있 다．실제로 P ．subrudecta 地衣類에서 MDA 함 량의 증가가 노출된 오염원의 양과 밀접한 관계 가 있는 것으로 조사되었다（Gonzales와 Pignata， 1997）．오존에 노출시킨 4종의 지의류를 MDA함량 변화를 기준으로 선발할 경우，P．austrosinense 가 오존에 가장 민감한 地衣類임을 알 수 있었 다．

여러 대기오염원 $\left(\mathrm{SO}_{2}, \mathrm{NOx}, \mathrm{O}_{3}\right.$ 와 중금속）에 노출된 地衣類에서 광합성 공생체（photobiont）인 조류（algae）의 엽록소 파괴는 가장 뗭확하게 나타 나는 피해 중의 하나로 이미 잘 알려진 사실이다 （Gonzales et al．，1996）． SO_{2} 나 O_{3} 과 같이 산화 력이 강한 대기오염원에 노출된 경우 地衣體의 엽 록소（chlorophyll a, b ）는 비가역적으로 산화 파괴 되어 농도가 감소하는 반면，산화산물인 phaeophytin 농도는 증가하게 되므로 phaeophytin a, b 의 흡 광도인 OD 415 nm 에 대하 OD 435 nm 의 비율은 감소한다（Garty et al．，1992）．엽록소 파괴는 대 기오염원에 민감한 地衣類에서 일어나는 피해를 알려주는 지표이어서 많은 연구들이 地衣體의 엽 록소를 추출하여 감소된 정도를 비교하는 방법을 사용하였으나，Ronen과 Galun（1984）은 DMSO로 추출한 용액의 OD435nm／OD415nm ratio를 촉정 함으로서 손쉽게 엽록소 파괴 정도를 알 수 있다 는 것을 발표하였다．이후 상당수의 연구에서 대 기오염원이나 산성비 또는 중금속의 노출 농도와 $\mathrm{OD} 435 \mathrm{~nm} / \mathrm{OD} 415 \mathrm{~nm}$ ratio 간에는 분명한 역상관 관계가 존재한다는 것이 밝혀져，地衣類의 엽록소 파괴정도 지표로 OD435nm／OD415nm ratio를 많 이 사용하고 있다．실제로 본 연구에서도 오존에 노출된 地衣體가 자연대기에 노출된 地衣體보다 $\mathrm{OD} 435 \mathrm{~nm} / \mathrm{OD} 415 \mathrm{~nm}$ ratio가 뚜렷하게 감소하여， 오존에 의한 엽록소 파괴가 진행되었음을 알 수 있 었다．엽록소의 감소된 정도는 P ．austrosinense $>R$ ．yasudae $\geq C$ ．braunsiana $>P$ ．tinctorum 순으로 조사되어 P ．austrosinense가 오존에 가 장 민감한 地衣類임을 알 수 있었다．이는 세포 막 파괴 정도를 알려주는 지표인 MDA 의 함량 중가와 어느 정도 일치하는 경향을 보여 일단 오 존에 의해 유도된 활성산소 및 free radical들이

세포막을 파괴한 후 세포 내로 유입되어 세포내 소기관 중의 하나인 엽록체의 광합성 색소를 파 괴한 것으로 해석할 수 있다．

본 결과에서 볼 수 있듯이 오존에 노출된 地衣類間에는 피해정도에 있어서 상당한 차이가 나타 났으며，같은 속（genus）에 속하는 地衣類라도 오 존에 대한 반응 정도가 다르게 나타나 地衣類 종 류에 따라 톡이한 오존 내성기작이 작용하고 있 다는 것을 알 수 있다．실제로 Tarhanen 등（1997） 이 Bryoria sp．에 속하는 B ．capillaris와 B ． fuscescens 2종의 地衣類에 $40 \sim 300 \mathrm{ppb}$ 수준의 오 존을 4 주 동안 노출한 결과 같은 속에 속하는 地衣類일지라도 地衣類 종에 따라 오존 반응의 차 이가 분명하게 나타나 대기오염 지표생물로서 地衣類 選拔에는 많은 주의가 요청된다．일반적으 로 地衣類는 대기오염원 특히 아황산가스 $\left(\mathrm{SO}_{2}\right)$ 에 민감한 지표생물로 널리 이용되고 있으나（Galun과 Ronen，1988；가 등，1995），많은 연구에서 오존 지표생물로서도 이용 가능함이 시사되고 있다 （Eversman과 Sigal，1987；Ross와 Nash，1983）． Ramalina sp．는 아황산가스에 아주 민감한 종으 로 알려져 있는데，본 연구에서는 오존에 가장 강한 地衣類로 나타났다．이것은 대기오염원의 종류와 유입 경로예 따른 차이로 생각되는데， Ramalina sp．와 같이 바위 위에 직립형으로 착 생하여 서식하는 수지상 地衣類는 건조에 견디기 위하여 매우 두꺼운 조직을 지니고 있는데 반하 여 수목 수피에 비교적 넓게 퍼져 착생하는 엽상 체 地衣類는 상대적으로 수분을 획득하기에 용이 하여 비교적 수지상 地衣類에 비하여 얇은 조직 을 지닌다．특히 수분이 존재하는 경우 수지상地衣類는 매우 빠른 속도로 地衣體 表面組織이 팽창하여 가능한 많은 양의 수분을 획득하려고 하는데，이런 상태에 SO_{2} 가 존재할 경우 오존에 비하여 물에 매우 잘 녹는 SO_{2} 의 독성 발회는 오 존에 비하여 훨씬 용이하며 독성 피해도 높게 나 타난다（Rope와 Pearson，1990）．또한 오존은 광 화학 반응에 의하여 2차적으로 생성되는 대기오 염원인 관계로 주로 일사량이 많은 주간에 높은 농도로 존재하게 되므로 R．yasudae와 같은 수 지상 地衣類约 경우 상대적으로 주간의 낮은 습 도상태에서 고농도의 오존 피해를 회피할 수 있 으므로 오존에 강한 반응을 나타낼 수 있다고 생 각된다．또한 지금까지 알려진 地衣類의 오존 내 성 정도는 식물체보다 비교적 높은 것이 일반적
（Tarhanen et al．，1997）이며，본 연구에서 적용 한 $200 \mathrm{ppb} / \mathrm{hr}$ 오존 농도는 많은 식물체에서 심각 한 피해를 유발할 수 있는 수준이었음에도 불구 하고 가시적 병징과 같은 급성피해가 유발되지 않았던 점은 식물체에서 대기오염의 주요 유입통 로로 작용하는 기공（stomata）이 地衣體에는 존재 하지 않고 대신에 地衣䯠 표면을 덮고 있는 곰팡 이의 호홉공（respiratory pore），열아（isidia）나 분 아（soredia）가 생성된 부분에서 생길 수 있는 미 세한 구멍을 통한 오존의 확산이 상대적으로 식 물체에 비하여 용이하지 않았기 때문인 것으로 여겨진다．이러한 地衣體 표면의 함몰 구멍 구조 나 동공（cavity）의 차이가 地衣類 종류에 따른 오 존 내성에도 영향을 미칠 수 있다．실제로 R ． yasudae의 경우 Parmeliaceae 地衣類의 엽체 표 면에 존재하는 열아나 분아와 같은 표면 돌기 구 조가 상대적으로 훨씬 미약하게 발달되어（Fig． 3）이러한 표면구조의 차이가 결국 오존에 대한 내성을 나타내는 기작으로 작용하였으리라 여겨 진다．그리고 地衣類 곰팡이가 抗酸化作用을 하 는 depsides나 depsidones와 같은 aromatic polyketides를 합성한다（Hidalgo 등，1994）는 점 을 생각하면，地衣類는 오존에서 유래된 活性酸素가 세포 내로 침투하기 전에 抗酸化物質의 방 어 작용으로 식물체보다 강한 내성을 지널 수 있 다고 생각된다．地衣類간의 오존 내성 차이는 抗酸化物質约 합성능력과도 깊은 관계에 있을 것이 다．

본 언구에서는 오존 내성의 기작에 상관없이，地衣類간의 오존 민감성 정도에 뚜렷한 차이가 나타나，장기간 오존 노출에 대한 지표생물로서地衣類의 이용가능성이 확인되었다．그리고 地衣體內 오염지수에서 P ．austrosinense가 가장 높 은 값을 나타내，기존에 알려진 SO_{2} 에 대한 민감 성（추은영과 김종갑，1998；Kovacs，1992）뿐 만 아니라 오존에 대해서도 민감성이 높음을 나타냈 다．더욱이 이 種은 우리나라 전역에 분포하면서 비교적 동정이 용이하다는 점을 생각하면，대기 오염에 대한 지표생물로서의 활용이 기대된다． 아울러 본 연구에서 제기된 地衣類의 오존 내성 차이 규명을 위한 생리，생화학적 연구와 국내에 분포하는 地衣類들에 대한 전반적인 대기오염 내 성 정도 파악이 계속적으로 필요할 섯으로 여겨 진다．

갑사의 맡씀

본 연구를 위하여 地衣類 동정에 많은 도움과 조언을 해주신 산림청 임업연구원의 가강현씨와地衣類 채집에 참여하여 주신 이재홍군과 조현군 에게 깊은 감사를 드립니다．

인 용 문 헌

1．가강현 • 조창덕 • 이창근．1995．지의류（Xan－ thoparmelia mexicana（Gyel．）Hale）이식 실험을 통한 대기오염에 대한 반융도 조사． 산림과학논문집 $51: 110-114$ ．
2．가강현•박현•류천인．1997．울릉도 지의류 （I）．Graphis와 Pyrenula 속 종의 분류．한 국균학회지 $25: 77-84$ ．
3．서울대학교 부속 연습립．1996．서울대학교 연습림 50 년．서울대학교 농업생명과학대학 부속 연습림，수원．pp．285－289．
4．유정환 • 가강현－박현． 1995 ．여천공단의 대 기오염이 토양의 화학적 특성，지의류，탈질 균 및 황산환원균에 미치는 영향．한국임학 회지．84：178－185．
5．추은영 • 김종갑．1998．수목착생지의류를 이 용한 울산지역의 대기환경평가．한국임학회 지． 87 ：404－414．
6．吉村 痛．1974．原色日本地衣植物圖鑑．保育社。大阪。日本。
7．Bates，J．W．，P．J．McNee，and A．R． McLeod．1996．Effects of sulphur dioxide and ozone on lichen colonization of conifers in the Liphook forest fumigation projects．New Phytologist 132：653－660．
8．Bradford，M．M．1976．A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein－dye binding．Analytical chemistry 7 2：248－254．
9．Canaani，O．，R．Ronen，J．Garty，D．Cahen， S．Malkin，and M．Galun．1984．Photoacoustic study of green algae Trebouxia in the lichen Ramalina duriaei in vivo．Photosynthesis research 5：297－306．
10．Crittenden，P．D．，J．C．David，D．L．Hawks－ worth，and F．S．Campbell．1995．Attempted
isolation and success in the culturing of a broad spectrum of lichen－forming and lichen－ icolous fungi．New phytologist $130: 267-297$ ．
11．Epstein，E．，O．Sagee，J．D．Cohen，and J． Garty．1986．Endogenous auxin and ethylene in lichen Ramalina duriaei．Plant Physiology 82 ：1122－1125．
12．Everman，S．and L．L．Sigal．1987．Effects of $\mathrm{SO}_{2}, \mathrm{O}_{3}$ and SO_{2} and O_{3} combinations on photosynthesis and ultrastructure of two lichen species．Cannadian Journal of Botany 65： 1806－1818．
13．Fishwick，M．J．and P．A．T．Swoboda． 1977. A comparison of methods for evaluating SO_{2} impact on selected lichen speices ：Parmelia chlorochroa，Collema polycarpon and Lecarnora muralis．Bryologiast 87 ：297－301．
14．Galun，M and R．Ronen．1988．Interaction of lichens and pollutants．p．55－74 In M．Galun （ed．）．CRC handbook of Lichenology，Vol． III．，CRC Press，Inc．，Boca Raton．
15．Garty，J．and J．Hagemeyer．1988．Heavy metals in the lichen Ramalina duriaei trans－ planted at biomonitoring stations in the region of a coal－fired plant in Israel after 3 years of operation．Water，Air and Soil Pollution 38 ： 311－323．
16．Garty，J．and Y．Karary，and J．Harel． 1992. Effect of low pH ，heavy metals and anions on chlorophyll degradation in the lichen Ramalina duriaei（De Not．）Bagl．Environmental and Experimental Botany $32: 229-241$ ．
17．Garty，J．，N．Kloog，R．Wolfson，Y．Cohen， A．Kamieli，and A．Avni．1997．The influence of air pollution on the concentration of mineral elements，on the spectral reflectance response and on the production of stress－ethylene in the lichen Ramalina duriaei．New Phytologist 137：587－597．
18．Gonzalez，C．M．，S．S．Casanovas，and M．L． Pignata．1996．Biomonitoring of air pollutants from traffic and industries employing Ramalina ecklonii（Spreng．）Mey．and Flot．Environ－ mental Pollution 91 ：269－277．
19．Gonzalez，C．M．and M．L．Pignata．1994．The
influence of air pollution on soluble proteins, chlorophyll degradation, MDA, sulphur and heavy metals in transplanted lichen. Chemistry and Ecology 9 : 105-113.
20. Gonzalez, C.M. and M.L. Pignata. 1997. Chemical response of the lichen Punctelia subrudecta (NYL.) KROG transplanted close to a power station in an urban-industrial environment. Environmental Pollution 97 : 195-203
21. Gordon, C. A., R. Herrera, and T. C. Hutchinson. 1995. The use of a common epiphytic lichens as a bioindicator of atmospheric inputs to two Venezuelan cloud forests. Journal of Tropical Ecology 11:1-26.
22. Hale, M.E., Jr. 1979. How to know the lichens. 2nd. Wm. C. Brown Company Publishers. Iowa. USA. 246 p.
23. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acids peroxidation. Archives of Biochemistry and Biophysics 12 $5: 189-198$.
24. Henriksson, E. and L. C. Pearson. 1981. Nitrogen fixation rate and chlorophyll content of lichen Peltigera canina exposed to sulphur dioxide. American Journal of Botany 68 : 680684.
25. Hidalgo, M.E., E. Fernandez, W. Quilhot and E. Lissi. 1994. Antioxidant activity of depsides and depsidones. Phytochemistry 37 1585-1587.
26. Hue, A.M. 1915. Lichens novos vel melius cognitos. Annal of Mycology 13:74-103.
27. Kardish, N., R. Ronen, P. Bubrick, and J. Garty. 1987. The influence of air pollution on the concentration of ATP and on chlorophyll degradation in the lichen Ramalina duriaei (De Not.) Bagl. New Phytologist 106 : 697706.
28. Kovacs, M. 1992. Biological Indicators in Environmental Protection. Ellis Horwood, London. p. 43-64.
29. Kwon, T.W., D.B. Menzel, and J. Olcott. 1965. Reactivity of malondialdehyde with food
constituents. Journal of Food Science $30: 808$ -813.
30. Levin, A.G. and M.L. Pignata. 1995. Ramalina ecklonii as bioindicator of atmospheric pollution in Argentina. Canadian Journal of Botany 73 : 1196-1202.
31. Loppi, S. and R. Bargagli. 1996. Lichen biomonitoring of trace elements in a geothermal area (central Italy). Water, Air and Soil Pollution 88 : 177-187.
32. Menzel, D.B. 1976. The role of free radicals in the toxicity of air pollution (nitrogen oxides and ozone). p. 181-203. In W.A. Pryor (ed.). Free Radicals in Biology, Vol. 2, Academic Press, New York.
33. Muhle, H. and F. LeBlance. 1975. Bryophyte and lichen succession on decaying log. I. Analysis along an evaporational gradient in eastern Canada. J. Hattori. Bot. Lab. 39 : 133.
34. Park, Y.S. 1990. The marcolichen flora of south Korea. The Bryologist $93: 105-160$.
35. Richardson, D.H.S. 1988. Medicinal and other economic aspects of lichens. p.93-108. In M. Galun (ed.), CRC handbook of Lichennology, Volume III. CRC Press, Inc., Boca Raton.
36. Ronen, R. and M. Galum. 1984. Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany 24: 239-245.
37. Rope, S.K. and L.C. Pearson. 1990. Lichens as air pollution biomonitors in a semi-arid environment in Idaho. Bryologist $93: 50-61$.
38. Ross, L.J. and T.H. Nash III. 1983. Effect of ozone on gross photosynthesis of lichens. Environmental and Experimental Botany 23 : 71-77.
39. Scheidegger, C. and B. Schroeter. 1995. Effects of ozone fumigation on epiphytic macrolichens : ultrastructure, CO_{2} gas exchange and chlorophyll fluorescence. Environmental Pollution 88 : 345-354.
40. Seaward, M.R.D. 1992. Large-scale air pollution monitoring using lichens. Geojournal 28 :

403－411．
41．Tarhanen，S．，T．Holopainen，and J．Oksanen． 1997．Ultrastructural changes and electrolyte leakage from ozone fumigated epiphytic lichens． Annals of Botany 80 ：611－621．

42．Von Arb，C．and C．Brunold．1989．Lichen physiology and air pollution．I．Physiological responses of in situ Parmelia sulcata among air pollution zones within Biel，Switzerland． Cannadian Journal of Botany 68：35－42．

[^0]: ${ }^{1}$ 接受1999年 9월 16일 Received on September 16， 1999.
 ${ }^{2}$ 순천대학교 사범대학 환경교육과 Department of Environmental Education，Sunchon National Univ．，Sunchon 540－ 742，Korea
 ${ }^{3}$ 서울대학교 농업생명과학대학 농업과학공동기기센터 NICEM，College of Agriculture and Life Sciences，Seoul National Univ．，Suwon 441－744，Korea
 ＊본 논문은 1998년도 순천대학교 공모과제 학술연구비에 의하여 연구되었음．

[^1]: Foliose lichen，P ．austrosinense，P ．tinctorum and C ．braunsiana show well developed surface structure such as isidia（ $D, \times 20$ ）， soredia（ $\mathrm{B} \& \mathrm{~F}$ ），compared with fructicose lichen，R．yasudae．In the fungal cortex，porous structure and cavities left by the erosion of sidia and soredia may facilitate ozone diffusion into the lichen thalli．

 Fig． 3.

