A Design of Pipelined Adaptive Decision-Feedback Equalized using Delayed LMS and Redundant Binary Complex Filter Structure

Delayed LMS와 Redundant Binary 복소수 필터구조를 이용한 파이프라인 적응 결정귀환 등화기 설계

  • An, Byung-Gyu (Seodu InChip, Inc.) ;
  • Lee, Jong-Nam (School of Electronic Engineering, Kumoh National University of Technology) ;
  • Shin, Kyung-Wook (School of Electronic Engineering, Kumoh National University of Technology)
  • Published : 2000.12.01

Abstract

This paper describes a single-chip full-custom implementation of pipelined adaptive decision-feedback equalizer(PADFE) using a 0.25-${\mu}m$ CMOS technology for wide-band wireless digital communication systems. To enhance the throughput rate of ADFE, two pipeline stages are inserted into the critical path of the ADFE by using delayed least-mean-square(DLMS) algorithm. Redundant binary (RB) arithmetic is applied to all the data processing of the PADFE including filter taps and coefficient update blocks. When compared with conventional methods based on two's complement arithmetic, the proposed approach reduces arithmetic complexity, as well as results in a very simple complex-valued filter structure, thus suitable for VLSI implementation. The design parameters including pipeline stage, filter tap, coefficient and internal bit-width, and equalization performance such as bit error rate (BER) and convergence speed are analyzed by algorithm-level simulation using COSSAP. The single-chip PADFE contains about 205,000 transistors on an area of about $1.96\times1.35-mm^2$. Simulation results show that it can safely operate with 200-MHz clock frequency at 2.5-V supply, and its estimated power dissipation is about 890-mW. Test results show that the fabricated chip works functionally well.

광대역 무선 디지털 통신 시스템용 파이프라인 적응 결정귀환 등화기(pipelined adaptive decision-feedback equalizer; PADFE)를 0,25-${\mu}m$ CMOS 공정을 사용하여 full custom 단일 칩으로 설계하였다. ADFE의 동작속도를 향상시키기 위해 DLMS(delayed least-mean-square)을 적용한 2-stage 파이프라인 구조로 설계하였다. PADFE의 필터와 계수갱신 블록 등 모든 연산을 redundant binary(RB) 수치계로 처리하였으며, 2의 보수 수치계를 사용하는 기존의 방식에 비해 연산량의 감소와 동작속도의 향상이 얻어졌으며, 또한 전체적인 구조의 단순화에 의해 VLSI 구현이 용이하다는 장점을 갖는다. COSSAP을 이용한 알고리듬 레벨 시뮬레이션을 통해 파이프라인 stage 수, 필터 tap 수, 계수 및 내부 비트 수 등의 설계 파라메터 결정과 bit error rate(BER), 수렴속도 등을 분석하였다. 설계된 PADFE는 약 205,000개의 트랜지스터로 구성되며, 코어의 면적은 41.96\times1.35-mm^2$이다. 시뮬레이션 결과, 2.5-V 전원전압에서 200-MHz의 클록 주파수로 동작 가능할 것으로 예상되며, 평균 전력소모는 약 890-mW로 예측되었다. 제작된 칩의 테스트 결과로부터 기능이 정상적으로 동작함을 확인하였다.

Keywords

References

  1. J. G. Proakis, Digital Communications, 3rd ed., McGraw-Hill, 1995
  2. Sampei, Seiichi, Application of Digital Wireless Technologies to Global Wireless Communications, Prentice Hall 1997
  3. P. M. Clarkson, Optimal and Adaptive Signal Processing, CRC Press, 1993
  4. S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice Hall, 1996
  5. G. Long, F. Ling, and J. G. Proakis, 'The LMS algorithm with delayed coefficient adaptation,' IEEE Trans. Acoust. Speech Signal Processing, vol. 37, pp. 1397-1405, Sept. 1989 https://doi.org/10.1109/29.31293
  6. R. B. Joshi and H. Samueli, 'A 100MHz, 5MBaud QAM decision-feedback equalizer for digital television applications,' Proc, IEEE ISSCC, pp. 68-69, Feb. 1994 https://doi.org/10.1109/ISSCC.1994.344723
  7. S. R. Meier, E. D. Man, T. G. Noll, U. Loibl and H. Hlar, 'A 2-um CMOS digital adaptive equalizer chip for QAM digital radio modems,' IEEE J. of Solid-State Circuits, vol. 23, no. 5, pp. 1212-1217, 1988 https://doi.org/10.1109/4.5946
  8. N. R. Shanbhag and K. K. Parhi, 'Pipelined Adaptive DFE Architectures Using Relaxed Look-Ahead,' IEEE Trans. Signal Processing, vol. 43, no. 6, pp. 1368-1385, June 1995 https://doi.org/10.1109/78.388851
  9. R. Perry, D. R. Bull, and A. Nix, 'Pipelined DFE Architecture Using Delayed Coefficient Adaptation,' IEEE Trans. Circuits Syst. II, vol. 45, no. 2, pp. 868-873, July 1998 https://doi.org/10.1109/82.700934
  10. K.W. Shin, B. S. Song and K. Bacrania, 'A 200-MHz complex-number multiplier using redundant binary arithmetic,' IEEE J. of Solid-State Circuits, vol. 33,no. 6, pp. 904-909, Jun. 1997 https://doi.org/10.1109/4.678655
  11. M. D. Meyer, and D. P. Agrawal, 'A High Sampling Rate Delayed LMS Filter Architecture,' IEEE Trans. Circuits Syst, II, vol. 40, no. 11, Nov. 1993 https://doi.org/10.1109/82.251841
  12. H. Herzberg, R. Haimi-Cohen, 'A Systolic Array Realization of an LMS Adaptive Filter and the Effects of Delayed Adaption,' IEEE Trans. Signal Processing, vol. 40, no. 11, pp. 2799-2804, Nov. 1992 https://doi.org/10.1109/78.165667
  13. S. C. Douglas, Q. Zhu, and K. F. Smith, 'A Pipelined LMS Adaptive FIR Filter Architecture Without Adaptation Delay,' IEEE Trans. Signal Processing, vol. 46, no. 3, pp. 775-779, Mar. 1998 https://doi.org/10.1109/78.661345
  14. COSSAP Tutorials (v1998. 02), Synopsys, 1998
  15. J. Boccuzzi, 'Performance Evaluation of Non-Linear Transmit Power Amplifiers for North American Digital Cellular Portables,' IEEE Trans. on Vehicle Technology, vol. 44, no. 2, May 1995 https://doi.org/10.1109/25.385912
  16. W. P. Chou and P. J. McLane, '16-State Nonlinear Equalizer for IS-54 Digital Cellular Channels,' IEEE Trans. on Vehicle Technology, vol. 45, no. 1, pp. 12-25, Feb. 1996 https://doi.org/10.1109/25.481816