기가 비트급 소자 제작을 위한 3차원 몬테카를로 극 저 에너지 이온 주입 모델링

Modeling of 3D Monte Carlo Ion Implantation in the Ultra-Low Energy for the Fabrication of Giga-Bit Devices

  • 반용찬 ((주)실리콘테크 부설연구소) ;
  • 권오섭 (仁荷大學校 電子電氣컴퓨터工學部) ;
  • 원태영 (仁荷大學校 電子電氣컴퓨터工學部)
  • 발행 : 2000.10.01

초록

소자의 크기가 딥 서브 마이크론 이하로 작아짐에 따라 극 저 에너지 이온 주입의 정확한 모델링은 중요함을 더하게 되었다. 본 논문에서는 이체 충돌 근사(Binary Collision Approximation)에 기반을 둔 3차원 몬테카를로 이온 주입 시뮬레이터를 개발하였다. 이를 위하여, 저 에너지 이온 주입에 있어 이체 충동 근사 방법의 제한 요소인 전자 에너지 정지력에 대한 모델을 개선하였고, 다중 충돌 계산을 위한 모델을 적용하였다. 계산된 이온 주입 도펀트 분포 및 결함 분포는 실제 실험치와 일치함을 확인하였다. 또한, 3차원 이온 주입 시뮬레이션에 있어 계산 시간의 효율을 극대화 하고자, 본 연구에서는 이온 분포 복사법(Ion Distribution Replica Method)을 개발하였고, 복잡한 토폴로지를 갖는 다층 에이어의 이온 주입 공정에 있어 빠른 수행 시간 및 결과의 정확성을 확인하였다.

A rigorous modeling of ultra-low energy implantation is becoming increasingly more important as devices shrink to deep submicron dimensions. In this paper, we have developed an efficient three-dimensional Monte Carlo ion implantation model based on a modified Binary Collision Approximation(BCA). To this purpose, the modified electronic stopping model and the multi-body collision model have been taken into account in this simulator. The dopant and damage profiles show very good agreement with SIMS(Secondary Ion Mass Spectroscopy) data and RBS(Rutherford Backscattering Spectroscopy) data, respectively. Moreover, the ion distribution replica method has been implemented into the model to get a computational efficiency in a 3D simulation, and we have calculated the 3D Monte Carlo simulation into the topographically complex structure.

키워드

참고문헌

  1. L. Gong, J. Lorenz, and H. Ryssel, 'Direct Observation of the Mask Edge Effect in a Boron Implantation,' Proceedings of the 20th European Solid State Device Research Conference(ESSDERC), pp. 93-96, 1990
  2. C. Park, K. M. Klein, A. F. Tasch, R. B. Simonton, and S. Novak, 'A Comprehensive and Computationally Efficient Modeling Approach for Simulation of Boron Ion Implantation into Single-Crystal Silicon with Explicit Dose and Implant Angle Dependence,' Proceedings of the 7th International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits(NASECODE), pp. 87-88, 1991
  3. J. F. Ziegler. Handbook of Ion Implantation Technology, North-Holland. 1992
  4. S. Tian, Monte Carlo simulation of ion implantation damage process in silicon: arsenic, phosphorus, silicon, BF2, and Boron implants, Ph. D. Thesis, The University of Texas at Austin, 1997
  5. G. Hobler, 'Monte Carlo simulation of two-dimensional implanted dopant distributions at mask edges,' Nucl. Inst. Meth, B, vol. 96, pp. 155-162. 1995 https://doi.org/10.1016/0168-583X(94)00476-5
  6. M. Posselt, B. Schmidt. C. S. Murthy, T. Feudal. and K. Suzuki, 'Modeling of Damage Accumulation during Ion Implantation into Single-Crystalline Silicon,' J. Electrochem. Soc., vol. 144, no.4, pp. 1495-1504, 1997 https://doi.org/10.1149/1.1837618
  7. B. Schmidt. M. Posselt, N. Strecker, and T. Feudel, 'Atomistic Simulation of Ion Implantation into Real 2D structures,' International Workshop on Challenges in Predictive Process Simulation (Chips'97), Germany, 1996
  8. S.- H. Yang et al., 'An Accurate Monte Carlo Binary Collision Model for $BF_2$ Implants into (100)Single-Crystal Silicon,' Proceeding of the 4th International Symposium on Process Physics and Modeling in Semiconductor Technology, pp, 481-494. 1996 https://doi.org/10.1109/IIT.1996.586439
  9. S. Tian, M. F. Morris, S. J. Morris, B. Obradovic, G. Wang, A. F. Tasch, and C.M. Snell, 'A Detailed Physical Model for Ion Implant Induced Damage in Silicon,' IEEE Trans. Electron Devices, vol. 45, pp, 1226-1237. June 1998 https://doi.org/10.1109/16.678523
  10. B. Obradovic, G. Balamurugan, G. Wang, Y. Chen, and A. F. Tasch. 'Monte Carlo Simulation of Ion Implantation into Topographically Complex Structures.' IEEE IEDM Tech. Dig., pp, 513-516, 1998 https://doi.org/10.1109/IEDM.1998.746410
  11. M. Son, J. Lee and H. Hwang, 'Development of Physically Based 3D Computer Simulation Code TRICSI for Ion Implantation into Crystalline Silicon,' J. of Korean Vacuum Science & Technology, vol. 1, no. 1, pp. 1-12. June 1997
  12. B. Obradovic et al., 'Low Energy Model for Ion Implantation of Arsenic and Boron into (100) Single-Crystal Silicon.' Proceedings of SPIE, Microelectronic Device Technology, vol. 3212, pp. 342-353, 1999
  13. M.T. Robinson and I.M. Torrens, 'Computer simulation of Atomic Displacements Cascades in Solids in the Binary Collision Approximation.' Phys. Rev. B, vol. 9, No. 12, pp. 5008-5024, 1974 https://doi.org/10.1103/PhysRevB.9.5008
  14. T. Won. 'Three-Dimensional Modeling and Simulation of Dry Etching Process,' JKPS(Journal of The Korean Physical Society), vol. 33. pp.72-75, November 1998
  15. S. J. Morris, B. Obradovic, S. H. Yang and A. F. Tasch. 'Modeling of Boron, Phosphorus. and Arsenic Implants into Single-Crystal Silicon over a Wide Range (Few keV to Several MeV),' IEDM '96. San Francisco, CA, pp. 721-724, 1996
  16. S. J. Morris, Electronic stopping in single-crystal silicon from a few keV to several MeV, Ph. D. Thesis, The University of Texas at Austin, 1997
  17. O. B. Firsov, 'A qualitative interpretation of the mean electron excitation energy in atomic collision,' Journal of Experimental and Theoretical Physics (USSR), vol. 36, pp. 1517-1523, 1959
  18. M. J. Norgett, M. T. Robinson, and I. M. Torrens, 'A proposed method of calculating displacement dose rate,' Nucl. Eng. Des., vol. 33, pp. 50-54, 1975 https://doi.org/10.1016/0029-5493(75)90035-7
  19. G. Wang, S. Tian, M. Morris, S. Morris, B. Obradovic, G. Balamurugan, and A. Tasch. 'A computationally efficient ion implantation model : modified Kinchin-Pease model,' Microelctronics Device Technology, Austin, TX, USA : SPIE-Int. Soc. Opt. Eng., pp. 324-333, 1997
  20. G. Hobler, 'Net Point Defect concentrations After Ion Implantation in Silicon,' Proceeding of the 4th International Symposium on Process Physics and Modeling in Semiconductor Technology, pp. 509-521, 1996
  21. M. Posselt, '3D modeling of ion implantation into crystalline silicon: influence of damage accumulation on dopant profiles,' Nucl. Inst. and Meth. B, vol. 96, pp. 163-167, 1995 https://doi.org/10.1016/0168-583X(94)00477-3
  22. S.-H. Yang, D. Lim, S. J. Morris, and A. F. Tasch, 'Improved efficiency in Monte Carlo Simulation of ion implanted impurity profiles in single-crystal materials,' Nucl. Inst. Meth. B, vol. 102, pp. 242-246, 1995 https://doi.org/10.1016/0168-583X(95)80149-G
  23. P. Bouillon, F. Benistant, T. Skotnicki, G. Guegan, D. Roche, E. Andre. D. Mathiot, S. Tedesco, F. Martin, M. Heitzmann, M. Lerme, M. Haond, 'Re-examination of Indium implantation for low power ${\mu}m$ technology,' IEEE IEDM Tech. Dig., pp. 897-900, 1995
  24. C. Caillat, S. Deleonibus, G. Guegan, S. Tedescon, B. Dal'zotto, M. Heitzmann, F. Martin, P. Mur, B. Marchand, F. Balestra, '65nm physical gate length NMOSFETs with heavy ion implanted pockets and highly reliable 2nm-thick gate oxide for 1.5V operation,' 1999 Sim. on VLSI Tech., pp. 89-90, 1999 https://doi.org/10.1109/VLSIT.1999.799354