크기가 다른 전극폭을 갖는 4분기 광도파로형 열광학스위치

4-Branch Waveguide Thermo-Optic Switch With Unequal Width Heaters

  • 송현채 (三星電子 情報通信 光素材事業部) ;
  • 이태형 (三星電子 情報通信 光素材事業部) ;
  • 신상영 (韓國科學技術院 電氣 및 電子工學科)
  • Song, Hyun-Chae (Opt. Comm. Products Division, Applied optics Research Group, Information & Communication Business, Samsung Electronics Co., LTD.) ;
  • Rhee Tae-Hyung (Opt. Comm. Products Division, Applied optics Research Group, Information & Communication Business, Samsung Electronics Co., LTD.) ;
  • Shin, Sang-Yung (Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology)
  • 발행 : 2000.06.01

초록

다분기 열광학 스위치는 수위칭 상태에 딸 요구되는 소비전력의 차이가 큰 단점이 있다. 이를 개선하는 방법으로 전극형태에서 외측전극폭을 내측전극폭에 비해 크게 설계하고 굴절률차이가 큰 코아와 클래드 물질을 사용하여 상부클래드의 두께를 얇게 하는 방법을 제안한다. 제안된 형태의 4분기 열광학스위치는 테플론과 폴리이미드계 폴리머 물질을 사용하여 제작되었고 1550 nm 파장대에서 그 특성을 측정하였다. 제작되어진 4분기 열광학스위치는 310~390 mW 정도의 소비전력에서 -16 dB 이하의 누호 특성을 나타 내어 스위칭 상태에 따른 소비전력의 차가 줄었을 뿐만 아니라 스위칭에 필요한 소비전력도 상당히 줄었다. 그리고 4.7 dB 정도의 삽입손실과 1 ms 이하의 스위칭 속도를 얻었다.

A multi-branch thermo-optic switch has a problem that driving powers in the switching states are different from each other; the power consumption for the inner output port is more than twice as large as that form the outer output port. In this pater, to solve this problem unequal width heaters and the waveguide structure with a thin overcladding layer are proposed in a four-branch thermo-optic switch. The proposed structure is fabricated with the polymer materials with high index difference, Teflon and polyimides. The fabricated device was measured at the wavelength of 1550 nm. The measured characteristics exhibit the smaller difference in the power consumption between the switching states and the driving power les than the previous four-branch thermo-optic switch with equal width heaters. As for the device performance, the crosstalk is better than - 16 dB at about 310 ~ 390 mW, the insertion loss is 4.7 dB, and the switching time is less than 1 ms.

키워드

참고문헌

  1. S. Okamoto, A Watanabe, and K Sato, 'Optical path cross-connect node architectures for photonic transport network,' J Lightwnve Technol., vol. 14, no. 6, pp. 1410-1422, 1996 https://doi.org/10.1109/50.511671
  2. A. Watanabe, S. Okamoto, and K. Sato, 'Optical path crossconnect node architectures with high modularity for photonic transport networks,' IEICE Trans, Comm, vol. E77-B, no. 10, pp. 1220-1229, 1994
  3. K. Mitsunaga, K. Murakami, M. Masuda, and J. Koyama, 'Optical LiNbO3 3-branched waveguide and its application to a 4-port optical switch,' Appl. Opt., vol. 19, no. 20, pp. 3837-3842, 1980
  4. M. Belanger and G. L. Yip, 'Theoretical and experilmental investigation of an active three-branch Ti:LiNbO$_3$ optical waveguide switch,' Appl. Opt., vol. 28, no. 1, pp. 53-59, 1939
  5. K. Propstra, T. Hoekstra, A. Borreman, and M. Diemeer, 'First thermo-optic lx3 digital optical switch,' ECIO'97, Stockholm Sweden, 1997
  6. H. -C. Song, S.-Y. Shin, W.-H. Jang, and T. H. Rhee, '1x4 thermo-optic switch based on four-branch waveguide,' Electron. Lett., vol. 35, no. 18, pp. 1546-1548, 1999 https://doi.org/10.1049/el:19991053
  7. R. Moosburger, E. Brose, G. Fischbeck, C. Kostrzewa, B. Schuppert, and K. Petermann, 'Robust digital optical switch based on a novel patterning technique for oversized polymer rib waveguides,' Proc ECOC, TuC.1.5, pp. 67-69, Oalo, 1996
  8. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, F. H. Groen, and P. Demeester, 'Sharp vertices in asymmetric Y-junctions by double masking,' IEEE Photon. Technol. Lett., vol. 6, no. 2, pp. 249-254, 1994 https://doi.org/10.1109/68.275440