Journal of Internet Computing and Services (인터넷정보학회논문지)
- Volume 1 Issue 1
- /
- Pages.63-72
- /
- 2000
- /
- 1598-0170(pISSN)
- /
- 2287-1136(eISSN)
Using Genetic Rule-Based Classifier System for Data Mining
유전자 알고리즘을 이용한 데이터 마이닝의 분류 시스템에 관한 연구
Abstract
Data mining means a process of nontrivial extraction of hidden knowledge or potentially useful information from data in large databases. Data mining algorithm is a multi-disciplinary field of research; machine learning, statistics, and computer science all make a contribution. Different classification schemes can be used to categorize data mining methods based on the kinds of tasks to be implemented and the kinds of application classes to be utilized, and classification has been identified as an important task in the emerging field of data mining. Since classification is the basic element of human's way of thinking, it is a well-studied problem in a wide varietyof application. In this paper, we propose a classifier system based on genetic algorithm with robust property, and the proposed system is evaluated by applying it to nDmC problem related to classification task in data mining.
데이터마이닝은 방대한 데이터 자료로부터 숨어있는 지식이나 유용한 정보를 추출하는 과정이다. 이러한 데이터 마이닝 알고리즘은 통계학, 전자계산학, 그리고 기계학습 분야에서의 오랜 기간동안 이루어진 연구 결과의 산물이다. 어느 특정한 상황에 적용하는 특정한 기술들의 선택은 구현되어야 하는 데이터 마이닝 임무의 성격과 가용한 데이터의 성격에 의존한다. 데이터 마이닝에는 여러 임무가 있으며, 그 중에서 가장 대표적인 임무가 분류라고 (classification) 볼 수 있다. 분류는 인간 사고의 기본적인 요소이기 때문에 여러 응용 분야에서 많은 연구가 진행되어 왔으며, 문제 분석의 첫 단계라고 볼 수 있다. 본 논문에서는 학습문제에서 강건성(robust)을 갖는 유전자 알고리즘 기반의 분류시스템을 제안하고, 데이터 마이닝에서 중요한 분류기능에 관련된 문제인 nDmC에 응용해서 그 유효성을 검증한다.
Keywords