References
- D. S. Broomhead and D. Lowe, 'Multivariate functional interpolation and adaptive networks,' Complex Systems, vol. 2, pp. 321-355, 1988
- M. J. D. Powell, 'Radial basis functions for multi variable interpolation: A review,' in IMA Conf. Approximation Functions Data, pp. 143-167, Shrivenham, UK, 1985
- J. Park and J. W. Sandberg, 'Universal approximation using radial-basis-function networks,' Neural Computation, vol. 3, pp. 246-257, 1991
- T. Poggio and F. Girosi, 'Regularization algorithms for learning that are equivalent to multilayer networks,' Science, vol. 247, pp, 978-982 https://doi.org/10.1126/science.247.4945.978
- J. Moody and C. Darken, 'Fast learning in networks of locally-tuned processing units,' Neural Computation, vol. 1, pp.281-294, 1989
- J. Platt, 'A resource-allocating network for function approximation,' Neural Computation, vol. 3, pp. 213-225, 1991
- V. Kadirkamanathan and M. Niranjan, 'A function estimation approach to sequential learning with neural networks,' Neural Computation, vol. 5, pp. 954-975, 1993
- L. I. Kuncheva, 'Initializing of an RBF network by a genetic algorithm,' Neurocomputing, vol. 14, pp.273-288, 1997 https://doi.org/10.1016/S0925-2312(96)00035-5
- R. Langari, L. Wang, and J. Yen, 'Radial basis function networks, regression weights, and the expectation-maximization algorithm,' IEEE Transactions on Systems, Man, and Cybernetics - Part A, vol. 27, no. 5, pp. 613-622, 1997 https://doi.org/10.1109/3468.618260
- R. Murray-Smith and K. J. Hunt, 'Local model architecture for nonlinear modelling and control,' in 'Advances in Neural Networks for Control Systems' (K. J. Hunt, G. R. Irwin, and K. Warwick, eds.), Advances in Industrial Control, Springer-Verlag, 1995
- K. J. Hunt, H. Haas, and R. Murray-Smith, 'Expanding the functional equivalence of radial basis function networks and fuzzy inference systems,' IEEE Transactions on Neural Networks, vol. 7, no. 3, pp.776-781, 1996 https://doi.org/10.1109/72.501735
- S. Chen and S. A. Billings, 'Neural networks for nonlinear dynamic system modelling and identification,' International Journal of Control, vol. 56, no. 2, pp, 319-346, 1992
- J. Schurmann, Pattern classification: A unified view of statistical and neural approaches, John Wiley & Sons, Inc., 1996
- H. -J. Zimmerman and P. Zysno, 'Latent connectives in human decision making,' Fuzzy Sets and Systems, vol. 4, pp.37-51, 1980 https://doi.org/10.1016/0165-0114(80)90062-7
- H. Dyckhoff and W. Pedrycz, 'Generalized means as model of compensative connectives,' Fuzzy Sets and Systems, vol. 14, pp. 143-154, 1984 https://doi.org/10.1016/0165-0114(84)90097-6
- R. Krishnapurum and J. Lee, 'Fuzzy-connective-based hierarchical aggregation networks for decision making,' Fuzzy Sets and Systems, vol. 46, pp. 11-27, 1992 https://doi.org/10.1016/0165-0114(92)90263-4
- R. Langari, and L. Wang, 'Fuzzy models, modular networks, and hybrid learning,' Fuzzy Sets and Systems, vol. 79, pp. 141-150, 1996 https://doi.org/10.1016/0165-0114(95)00151-4
- M. Delgado, A. F. Gomez-Skarmeta, and F. Matin, 'A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling,' IEEE Tr. on Fuzzy Systems, vol. 5, no. 2, pp. 223-233, 1997 https://doi.org/10.1109/91.580797
- R. M. Tong, 'The evaluation of fuzzy models derived from experimental data,' Fuzzy Sets and Systems, vol. 4, pp. 1-12, 1980 https://doi.org/10.1016/0165-0114(80)90059-7
- W. Pedrycz, 'An identification algorithms in fuzzy relational systems', Fuzzy Sets and Systems, vol. 13, pp. 153-167, 1984 https://doi.org/10.1016/0165-0114(84)90015-0
- M. Sugeno and K. Tanaka, 'Successive identification of a fuzzy model and its application to prediction of a complex system,' Fuzzy Sets and Systems, vol. 42, pp.315-334, 1991 https://doi.org/10.1016/0165-0114(91)90110-C
- M. Sugeno and T. Yasukawa, 'A fuzzy-logic-based approach to qualitative modeling', IEEE Trans. Fuzzy Syst., Vol. I, No.1, pp. 7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
- L. Wang and R. Langari, 'Complex systems modeling via fuzzy logic,' IEEE Tr. on Systems, Man and Cybernetics, vol. 26, No. 1, pp.100-106, 1996 https://doi.org/10.1109/3477.484441
- W.A. Farag, V. H. Quintana, and G. Lambert-Torres, 'A genetic-based neuro-fuzzy approach for modeling and control of dynamic systems,' IEEE Tr. on Neural Networks, Vol. 9, No.5, pp.756-767, 1998 https://doi.org/10.1109/72.712150